Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biochem J ; 481(8): 569-585, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38563463

RESUMEN

Homocystinuria is a rare disease caused by mutations in the CBS gene that results in a deficiency of cystathionine ß-synthase (CBS). CBS is an essential pyridoxal 5'-phosphate (PLP)-dependent enzyme in the transsulfuration pathway, responsible for combining serine with homocysteine to produce cystathionine, whose activity is enhanced by the allosteric regulator S-adenosylmethionine (SAM). CBS also plays a role in generating hydrogen sulfide (H2S), a gaseous signaling molecule with diverse regulatory functions within the vascular, nervous, and immune systems. In this study, we present the clinical and biochemical characterization of two novel CBS missense mutations that do not respond to pyridoxine treatment, namely c.689T > A (L230Q) and 215A > T (K72I), identified in a Chinese patient. We observed that the disease-associated K72I genetic variant had no apparent effects on the spectroscopic and catalytic properties of the full-length enzyme. In contrast, the L230Q variant expressed in Escherichia coli did not fully retain heme and when compared with the wild-type enzyme, it exhibited more significant impairments in both the canonical cystathionine-synthesis and the alternative H2S-producing reactions. This reduced activity is consistent with both in vitro and in silico evidence, which indicates that the L230Q mutation significantly decreases the overall protein's stability, which in turn, may represent the underlying cause of its pathogenicity.


Asunto(s)
Cistationina betasintasa , Homocistinuria , Mutación Missense , Cistationina betasintasa/genética , Cistationina betasintasa/química , Cistationina betasintasa/metabolismo , Homocistinuria/genética , Homocistinuria/metabolismo , Homocistinuria/enzimología , Humanos , Masculino , Femenino
2.
Antimicrob Agents Chemother ; 68(4): e0007524, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38445869

RESUMEN

Hydrogen sulfide (H2S) has been proposed to protect bacteria from antibiotics, pointing to H2S-producing enzymes as possible targets for the development of antibiotic adjuvants. Here, MIC assays performed with Pseudomonas aeruginosa mutants producing altered H2S levels demonstrate that H2S does not affect antibiotic resistance in this bacterium. Moreover, correlation analyses in a large collection of P. aeruginosa cystic fibrosis isolates argue against the protective role of H2S from antibiotic activity during chronic lung infection.


Asunto(s)
Sulfuro de Hidrógeno , Infecciones por Pseudomonas , Humanos , Pseudomonas aeruginosa , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Farmacorresistencia Microbiana , Sulfuros
3.
Biochim Biophys Acta Proteins Proteom ; 1872(4): 141019, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38641086

RESUMEN

The Fragile X messenger ribonucleoprotein (FMRP) is a multi-domain protein involved in interactions with various macromolecules, including proteins and coding/non-coding RNAs. The three KH domains (KH0, KH1 and KH2) within FMRP are recognized for their roles in mRNA binding. In the context of Fragile X syndrome (FXS), over-and-above CGG triplet repeats expansion, three specific point mutations have been identified, each affecting one of the three KH domains (R138QKH0, G266EKH1, and I304NKH2) resulting in the expression of non-functional FMRP. This study aims to elucidate the molecular mechanism underlying the loss of function associated with the G266EKH1 pathological variant. We investigate the conformational and dynamic properties of the isolated KH1 domain and the two KH1 site-directed mutants G266EKH1 and G266AKH1. Employing a combined in vitro and in silico approach, we reveal that the G266EKH1 variant lacks the characteristic features of a folded domain. This observation provides an explanation for functional impairment observed in FMRP carrying the G266E mutation within the KH1 domain, as it renders the domain unable to fold properly. Molecular Dynamics simulations suggest a pivotal role for residue 266 in regulating the structural stability of the KH domains, primarily through stabilizing the α-helices of the domain. Overall, these findings enhance our comprehension of the molecular basis for the dysfunction associated with the G266EKH1 variant in FMRP.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/química , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Dominios Proteicos , Simulación de Dinámica Molecular , Conformación Proteica , Mutagénesis Sitio-Dirigida
4.
Sci Rep ; 14(1): 9364, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654065

RESUMEN

The escalating drug resistance among microorganisms underscores the urgent need for innovative therapeutic strategies and a comprehensive understanding of bacteria's defense mechanisms against oxidative stress and antibiotics. Among the recently discovered barriers, the endogenous production of hydrogen sulfide (H2S) via the reverse transsulfuration pathway, emerges as a noteworthy factor. In this study, we have explored the catalytic capabilities and crystal structure of cystathionine γ-lyase from Pseudomonas aeruginosa (PaCGL), a multidrug-opportunistic pathogen chiefly responsible for nosocomial infections. In addition to a canonical L-cystathionine hydrolysis, PaCGL efficiently catalyzes the production of H2S using L-cysteine and/or L-homocysteine as alternative substrates. Comparative analysis with the human enzyme and counterparts from other pathogens revealed distinct structural features within the primary enzyme cavities. Specifically, a distinctly folded entrance loop could potentially modulate the access of substrates and/or inhibitors to the catalytic site. Our findings offer significant insights into the structural evolution of CGL enzymes across different pathogens and provide novel opportunities for developing specific inhibitors targeting PaCGL.


Asunto(s)
Dominio Catalítico , Cistationina gamma-Liasa , Sulfuro de Hidrógeno , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzimología , Cistationina gamma-Liasa/metabolismo , Cistationina gamma-Liasa/química , Cristalografía por Rayos X , Especificidad por Sustrato , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/química , Modelos Moleculares , Cisteína/metabolismo , Cisteína/química , Conformación Proteica , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Humanos , Homocisteína/metabolismo , Homocisteína/química , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA