Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 617(7962): 706-710, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37225880

RESUMEN

The radionuclide thorium-229 features an isomer with an exceptionally low excitation energy that enables direct laser manipulation of nuclear states. It constitutes one of the leading candidates for use in next-generation optical clocks1-3. This nuclear clock will be a unique tool for precise tests of fundamental physics4-9. Whereas indirect experimental evidence for the existence of such an extraordinary nuclear state is substantially older10, the proof of existence has been delivered only recently by observing the isomer's electron conversion decay11. The isomer's excitation energy, nuclear spin and electromagnetic moments, the electron conversion lifetime and a refined energy of the isomer have been measured12-16. In spite of recent progress, the isomer's radiative decay, a key ingredient for the development of a nuclear clock, remained unobserved. Here, we report the detection of the radiative decay of this low-energy isomer in thorium-229 (229mTh). By performing vacuum-ultraviolet spectroscopy of 229mTh incorporated into large-bandgap CaF2 and MgF2 crystals at the ISOLDE facility at CERN, photons of 8.338(24) eV are measured, in agreement with recent measurements14-16 and the uncertainty is decreased by a factor of seven. The half-life of 229mTh embedded in MgF2 is determined to be 670(102) s. The observation of the radiative decay in a large-bandgap crystal has important consequences for the design of a future nuclear clock and the improved uncertainty of the energy eases the search for direct laser excitation of the atomic nucleus.

2.
Rep Prog Phys ; 87(8)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38215499

RESUMEN

Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, molecular, nuclear, astrophysical, and chemical advances which provide the foundation for their study, describe the facilities where these species are and will be produced, and provide an outlook for the future of this nascent field.

3.
J Chem Phys ; 159(12)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-38127371

RESUMEN

Relativistic coupled-cluster calculations of the ionization potential, dissociation energy, and excited electronic states under 35 000 cm-1 are presented for the actinium monofluoride (AcF) molecule. The ionization potential is calculated to be IPe = 48 866 cm-1, and the ground state is confirmed to be a closed-shell singlet and thus strongly sensitive to the T,P-violating nuclear Schiff moment of the Ac nucleus. Radiative properties and transition dipole moments from the ground state are identified for several excited states, achieving a mean uncertainty estimate of ∼450 cm-1 for the excitation energies. For higher-lying states that are not directly accessible from the ground state, possible two-step excitation pathways are proposed. The calculated branching ratios and Franck-Condon factors are used to investigate the suitability of AcF for direct laser cooling. The lifetime of the metastable (1)3Δ1 state, which can be used in experimental searches of the electric dipole moment of the electron, is estimated to be of order 1 ms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA