Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 26(11)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34200016

RESUMEN

The increase in antibacterial resistance is a serious challenge for both the health and defence sectors and there is a need for both novel antibacterial targets and antibacterial strategies. RNA degradation and ribonucleases, such as the essential endoribonuclease RNase E, encoded by the rne gene, are emerging as potential antibacterial targets while antisense oligonucleotides may provide alternative antibacterial strategies. As rne mRNA has not been previously targeted using an antisense approach, we decided to explore using antisense oligonucleotides to target the translation initiation region of the Escherichia coli rne mRNA. Antisense oligonucleotides were rationally designed and were synthesised as locked nucleic acid (LNA) gapmers to enable inhibition of rne mRNA translation through two mechanisms. Either LNA gapmer binding could sterically block translation and/or LNA gapmer binding could facilitate RNase H-mediated cleavage of the rne mRNA. This may prove to be an advantage over the majority of previous antibacterial antisense oligonucleotide approaches which used oligonucleotide chemistries that restrict the mode-of-action of the antisense oligonucleotide to steric blocking of translation. Using an electrophoretic mobility shift assay, we demonstrate that the LNA gapmers bind to the translation initiation region of E. coli rne mRNA. We then use a cell-free transcription translation reporter assay to show that this binding is capable of inhibiting translation. Finally, in an in vitro RNase H cleavage assay, the LNA gapmers facilitate RNase H-mediated mRNA cleavage. Although the challenges of antisense oligonucleotide delivery remain to be addressed, overall, this work lays the foundations for the development of a novel antibacterial strategy targeting rne mRNA with antisense oligonucleotides.


Asunto(s)
Antibacterianos/farmacología , Endorribonucleasas/genética , Escherichia coli/enzimología , Oligonucleótidos/farmacología , Sistema Libre de Células , Endorribonucleasas/antagonistas & inhibidores , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/genética , Oligonucleótidos/síntesis química , Iniciación de la Cadena Peptídica Traduccional/efectos de los fármacos , ARN Mensajero/antagonistas & inhibidores
2.
J Bacteriol ; 201(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30642993

RESUMEN

The highly virulent intracellular pathogen Francisella tularensis is a Gram-negative bacterium that has a wide host range, including humans, and is the causative agent of tularemia. To identify new therapeutic drug targets and vaccine candidates and investigate the genetic basis of Francisella virulence in the Fischer 344 rat, we have constructed an F. tularensis Schu S4 transposon library. This library consists of more than 300,000 unique transposon mutants and represents a transposon insertion for every 6 bp of the genome. A transposon-directed insertion site sequencing (TraDIS) approach was used to identify 453 genes essential for growth in vitro Many of these essential genes were mapped to key metabolic pathways, including glycolysis/gluconeogenesis, peptidoglycan synthesis, fatty acid biosynthesis, and the tricarboxylic acid (TCA) cycle. Additionally, 163 genes were identified as required for fitness during colonization of the Fischer 344 rat spleen. This in vivo selection screen was validated through the generation of marked deletion mutants that were individually assessed within a competitive index study against the wild-type F. tularensis Schu S4 strain.IMPORTANCE The intracellular bacterial pathogen Francisella tularensis causes a disease in humans characterized by the rapid onset of nonspecific symptoms such as swollen lymph glands, fever, and headaches. F. tularensis is one of the most infectious bacteria known and following pulmonary exposure can have a mortality rate exceeding 50% if left untreated. The low infectious dose of this organism and concerns surrounding its potential as a biological weapon have heightened the need for effective and safe therapies. To expand the repertoire of targets for therapeutic development, we initiated a genome-wide analysis. This study has identified genes that are important for F. tularensis under in vitro and in vivo conditions, providing candidates that can be evaluated for vaccine or antibacterial development.


Asunto(s)
Francisella tularensis/crecimiento & desarrollo , Francisella tularensis/genética , Genes Bacterianos , Tularemia/microbiología , Factores de Virulencia/genética , Animales , Análisis Mutacional de ADN , Elementos Transponibles de ADN , Modelos Animales de Enfermedad , Pruebas Genéticas , Mutagénesis Insercional , Neocallimastigales , Ratas Endogámicas F344
3.
BMC Microbiol ; 18(1): 46, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29855259

RESUMEN

BACKGROUND: Yersinia pseudotuberculosis is a zoonotic pathogen, causing mild gastrointestinal infection in humans. From this comparatively benign pathogenic species emerged the highly virulent plague bacillus, Yersinia pestis, which has experienced significant genetic divergence in a relatively short time span. Much of our knowledge of Yersinia spp. evolution stems from genomic comparison and gene expression studies. Here we apply transposon-directed insertion site sequencing (TraDIS) to describe the essential gene set of Y. pseudotuberculosis IP32953 in optimised in vitro growth conditions, and contrast these with the published essential genes of Y. pestis. RESULTS: The essential genes of an organism are the core genetic elements required for basic survival processes in a given growth condition, and are therefore attractive targets for antimicrobials. One such gene we identified is yptb3665, which encodes a peptide deformylase, and here we report for the first time, the sensitivity of Y. pseudotuberculosis to actinonin, a deformylase inhibitor. Comparison of the essential genes of Y. pseudotuberculosis with those of Y. pestis revealed the genes whose importance are shared by both species, as well as genes that were differentially required for growth. In particular, we find that the two species uniquely rely upon different iron acquisition and respiratory metabolic pathways under similar in vitro conditions. CONCLUSIONS: The discovery of uniquely essential genes between the closely related Yersinia spp. represent some of the fundamental, species-defining points of divergence that arose during the evolution of Y. pestis from its ancestor. Furthermore, the shared essential genes represent ideal candidates for the development of novel antimicrobials against both species.


Asunto(s)
Genes Esenciales , Mutagénesis Insercional/métodos , Yersinia pestis/crecimiento & desarrollo , Yersinia pseudotuberculosis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Elementos Transponibles de ADN , Evolución Molecular , Especiación Genética , Humanos , Análisis de Secuencia de ADN , Yersinia pestis/genética , Yersinia pseudotuberculosis/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-28438936

RESUMEN

Burkholderia pseudomallei is the causative agent of melioidosis, a serious disease endemic in Southeast Asia and Northern Australia. Antibiotic treatment is lengthy and relapse often occurs. Finafloxacin is a novel fluoroquinolone with increased antibacterial activity in acidic conditions in contrast to other fluoroquinolones which demonstrate reduced activity at a lower pH. Therefore, finafloxacin may have improved efficacy against B. pseudomallei, which can survive within host cells where the local pH is acidic. In vitro analysis was performed using MICs, minimal bactericidal concentrations (MBCs), time-kill assays, persister cell assays, and macrophage assays. Finafloxacin showed increased bactericidal activity at pH 5 in comparison to pH 7 and ciprofloxacin at pH 5. In vivo studies in BALB/c mice included pharmacokinetic studies to inform an appropriate dosing regimen. Finafloxacin efficacy was evaluated in an inhalational murine model of melioidosis where antibiotic treatment was initiated at 6 or 24 h postchallenge and continued for 14 days, and mice were observed for 63 days. The survival of infected mice following 14 days of treatment was 80%, 60% or 0% for treatments initiated at 6 h and 60%, 30% or 0% for treatments initiated at 24 h for finafloxacin, co-trimoxazole, or ciprofloxacin, respectively. In summary, finafloxacin has increased bactericidal activity for B. pseudomallei under acidic conditions in vitro and improves survival in a murine model of melioidosis compared with those for ciprofloxacin. Furthermore, finafloxacin improves bacteriological clearance compared with that of co-trimoxazole, suggesting it may offer an effective postexposure prophylaxis against B. pseudomallei.


Asunto(s)
Antibacterianos/farmacología , Burkholderia pseudomallei/efectos de los fármacos , Fluoroquinolonas/farmacología , Animales , Ciprofloxacina/farmacología , Concentración de Iones de Hidrógeno , Ratones , Pruebas de Sensibilidad Microbiana
5.
BMC Microbiol ; 17(1): 163, 2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28732479

RESUMEN

BACKGROUND: The World Health Organization has categorized plague as a re-emerging disease and the potential for Yersinia pestis to also be used as a bioweapon makes the identification of new drug targets against this pathogen a priority. Environmental temperature is a key signal which regulates virulence of the bacterium. The bacterium normally grows outside the human host at 28 °C. Therefore, understanding the mechanisms that the bacterium used to adapt to a mammalian host at 37 °C is central to the development of vaccines or drugs for the prevention or treatment of human disease. RESULTS: Using a library of over 1 million Y. pestis CO92 random mutants and transposon-directed insertion site sequencing, we identified 530 essential genes when the bacteria were cultured at 28 °C. When the library of mutants was subsequently cultured at 37 °C we identified 19 genes that were essential at 37 °C but not at 28 °C, including genes which encode proteins that play a role in enabling functioning of the type III secretion and in DNA replication and maintenance. Using genome-scale metabolic network reconstruction we showed that growth conditions profoundly influence the physiology of the bacterium, and by combining computational and experimental approaches we were able to identify 54 genes that are essential under a broad range of conditions. CONCLUSIONS: Using an integrated computational-experimental approach we identify genes which are required for growth at 37 °C and under a broad range of environments may be the best targets for the development of new interventions to prevent or treat plague in humans.


Asunto(s)
Proteínas Bacterianas/genética , Biología Computacional/métodos , Genes Esenciales , Peste/microbiología , Yersinia pestis/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Mutación , Yersinia pestis/crecimiento & desarrollo , Yersinia pestis/metabolismo
6.
Antimicrob Agents Chemother ; 60(12): 7206-7215, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27671061

RESUMEN

Bioluminescence imaging (BLI) enables real-time, noninvasive tracking of infection in vivo and longitudinal infection studies. In this study, a bioluminescent Francisella tularensis strain, SCHU S4-lux, was used to develop an inhalational infection model in BALB/c mice. Mice were infected intranasally, and the progression of infection was monitored in real time using BLI. A bioluminescent signal was detectable from 3 days postinfection (3 dpi), initially in the spleen and then in the liver and lymph nodes, before finally becoming systemic. The level of bioluminescent signal correlated with bacterial numbers in vivo, enabling noninvasive quantification of bacterial burdens in tissues. Treatment with levofloxacin (commencing at 4 dpi) significantly reduced the BLI signal. Furthermore, BLI was able to distinguish noninvasively between different levofloxacin treatment regimens and to identify sites of relapse following treatment cessation. These data demonstrate that BLI and SCHU S4-lux are suitable for the study of F. tularensis pathogenesis and the evaluation of therapeutics for tularemia.


Asunto(s)
Antibacterianos/farmacología , Francisella tularensis/efectos de los fármacos , Francisella tularensis/crecimiento & desarrollo , Tularemia/tratamiento farmacológico , Tularemia/patología , Animales , Modelos Animales de Enfermedad , Femenino , Francisella tularensis/metabolismo , Levofloxacino/farmacología , Hígado/microbiología , Mediciones Luminiscentes , Ganglios Linfáticos/microbiología , Ratones , Ratones Endogámicos BALB C , Bazo/microbiología , Tularemia/microbiología
7.
Infect Immun ; 84(3): 701-10, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26712202

RESUMEN

Burkholderia pseudomallei, the causative agent of melioidosis, has complex and poorly understood extracellular and intracellular lifestyles. We used transposon-directed insertion site sequencing (TraDIS) to retrospectively analyze a transposon library that had previously been screened through a BALB/c mouse model to identify genes important for growth and survival in vivo. This allowed us to identify the insertion sites and phenotypes of negatively selected mutants that were previously overlooked due to technical constraints. All 23 unique genes identified in the original screen were confirmed by TraDIS, and an additional 105 mutants with various degrees of attenuation in vivo were identified. Five of the newly identified genes were chosen for further characterization, and clean, unmarked bpsl2248, tex, rpiR, bpsl1728, and bpss1528 deletion mutants were constructed from the wild-type strain K96243. Each of these mutants was tested in vitro and in vivo to confirm their attenuated phenotypes and investigate the nature of the attenuation. Our results confirm that we have identified new genes important to in vivo virulence with roles in different stages of B. pseudomallei pathogenesis, including extracellular and intracellular survival. Of particular interest, deletion of the transcription accessory protein Tex was shown to be highly attenuating, and the tex mutant was capable of providing protective immunity against challenge with wild-type B. pseudomallei, suggesting that the genes identified in our TraDIS screen have the potential to be investigated as live vaccine candidates.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderia pseudomallei/crecimiento & desarrollo , Burkholderia pseudomallei/metabolismo , Melioidosis/microbiología , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Burkholderia pseudomallei/genética , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Viabilidad Microbiana , Factores de Virulencia/genética
8.
Antimicrob Agents Chemother ; 58(6): 3053-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24637682

RESUMEN

Liposome-encapsulated ciprofloxacin for inhalation (CFI) was investigated as a putative postexposure therapeutic for two strains of Francisella tularensis. The efficacies of oral ciprofloxacin and intranasally instilled CFI could not be distinguished in a mouse model of infection with the F. tularensis live vaccine strain (LVS), where a single dose of either formulation offered full protection against a lethal challenge. However, mouse studies with the more virulent Schu S4 strain of F. tularensis demonstrated that a higher level of protection against a lethal aerosol infection is provided by CFI than by oral ciprofloxacin. In addition, using this infection model, it was possible to discriminate the efficacy of intranasally instilled CFI from that of aerosolized CFI, with aerosolized CFI providing full protection after just a single dose. The improved efficacy of CFI compared to oral ciprofloxacin is likely due to the high sustained concentrations of ciprofloxacin in the lung. In summary, CFI may be a promising therapy, perhaps enabling the prophylactic regimen to be shortened, for use in the event of a deliberate release of F. tularensis. The prophylactic efficacy of CFI against other biological warfare (BW) threat agents also warrants investigation.


Asunto(s)
Ciprofloxacina/administración & dosificación , Francisella tularensis/efectos de los fármacos , Liposomas , Tularemia/tratamiento farmacológico , Vacunas Atenuadas/inmunología , Administración por Inhalación , Administración Intranasal , Aerosoles , Animales , Vacunas Bacterianas/inmunología , Disponibilidad Biológica , Ciprofloxacina/farmacocinética , Modelos Animales de Enfermedad , Femenino , Francisella tularensis/inmunología , Francisella tularensis/patogenicidad , Pulmón/inmunología , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Análisis de Supervivencia , Virulencia
9.
Microb Pathog ; 63: 16-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23707360

RESUMEN

CpG DNA is a potent activator of the innate immune system. Here the protective effects of CpG DNA are assessed against the facultative intracellular pathogen Francisella tularensis. Dosing of mice with CpG DNA provided protection against disease caused by F. tularensis subsp. holarctica live vaccine strain (LVS) but did not protect against the fully virulent F. tularensis subsp holarctica strain HN63. Similarly, in vitro studies in J774A murine macrophage-like cells demonstrated that stimulation with CpG DNA enables control of intracellular replication of LVS but not HN63. These data confirm findings that CpG DNA may have limited efficacy in providing protection against fully virulent strains of F. tularensis and also suggest that in vitro assays may be useful for the evaluation of novel treatments for virulent F. tularensis.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología , Francisella tularensis/inmunología , Oligodesoxirribonucleótidos/administración & dosificación , Tularemia/prevención & control , Animales , Línea Celular , Citosol/microbiología , Modelos Animales de Enfermedad , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Análisis de Supervivencia , Tularemia/inmunología
10.
Med Microbiol Immunol ; 202(1): 1-10, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22772799

RESUMEN

The innate immune system provides the first line of host defence against invading pathogens. Key to upregulation of the innate immune response are Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns (PAMPs) and trigger a signaling pathway culminating in the production of inflammatory mediators. Central to this TLR signaling pathway are heterotypic protein-protein interactions mediated through Toll/interleukin-1 receptor (TIR) domains found in both the cytoplasmic regions of TLRs and adaptor proteins. Pathogenic bacteria have developed a range of ingenuous strategies to evade the host immune mechanisms. Recent work has identified a potentially novel evasion mechanism involving bacterial TIR domain proteins. Such domains have been identified in a wide range of pathogenic bacteria, and there is evidence to suggest that they interfere directly with the TLR signaling pathway and thus inhibit the activation of NF-κB. The individual TIR domains from the pathogenic bacteria Salmonella enterica serovar Enteritidis, Brucella sp, uropathogenic E. coli and Yersinia pestis have been analyzed in detail. The individual bacterial TIR domains from these pathogenic bacteria seem to differ in their modes of action and their roles in virulence. Here, we review the current state of knowledge on the possible roles and mechanisms of action of the bacterial TIR domains.


Asunto(s)
Proteínas Bacterianas/inmunología , Bacterias Gramnegativas/inmunología , Bacterias Gramnegativas/patogenicidad , Evasión Inmune , Inmunidad Innata , Factores de Virulencia/inmunología , Proteínas Bacterianas/genética , Humanos , Modelos Biológicos , Estructura Terciaria de Proteína , Receptores de Interleucina-1/antagonistas & inhibidores , Receptores de Interleucina-1/inmunología , Transducción de Señal , Receptores Toll-Like/antagonistas & inhibidores , Receptores Toll-Like/inmunología , Factores de Virulencia/genética
11.
Eur J Immunol ; 41(1): 107-15, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21182082

RESUMEN

Burkholderia pseudomallei causes melioidosis, a disease with a wide range of possible outcomes, from seroconversion and dormancy to sepsis and death. This spectrum of host-pathogen interactions poses challenging questions about the heterogeneity in immunity to B. pseudomallei. Models show protection to be dependent on CD4(+) cells and IFN-γ, but little is known about specific target antigens. Having previously implicated the ABC transporter, LolC, in protective immunity, we here use epitope prediction, HLA-binding studies, HLA-transgenic models and studies of T cells from seropositive individuals to characterize HLA-restricted LolC responses. Immunized mice showed long-lasting memory to the protein, whereas predictive algorithms identified epitopes within LolC that subsequently demonstrated strong HLA class II binding. Immunization of HLA-DR transgenics with LolC stimulated T-cell responses to four of these epitopes. Furthermore, the responsiveness of HLA transgenics to LolC revealed a hierarchy supportive of HLA polymorphism-determined differential susceptibility. Seropositive human donors of diverse HLA class II types showed T-cell responses to LolC epitopes, which are conserved among Burkholderia species including Burkholderia cenocepacia, associated with life-threatening cepacia complex in cystic fibrosis patients and Burkholderia mallei, which causes glanders. These findings suggest a role for LolC epitopes in multiepitope vaccine design for melioidosis and related diseases.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/inmunología , Burkholderia pseudomallei/inmunología , Linfocitos T CD4-Positivos/inmunología , Melioidosis/inmunología , Animales , Burkholderia cenocepacia/inmunología , Burkholderia mallei/inmunología , Femenino , Muermo/inmunología , Antígenos HLA/genética , Antígenos HLA/inmunología , Antígenos de Histocompatibilidad/inmunología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Polimorfismo Genético/inmunología
12.
Microbiology (Reading) ; 158(Pt 6): 1593-1606, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22403187

RESUMEN

The Toll/interleukin (IL)-1 receptor (TIR) domain is an essential component of eukaryotic innate immune signalling pathways. Interaction between TIR domains present in Toll-like receptors and associated adaptors initiates and propagates an immune signalling cascade. Proteins containing TIR domains have also been discovered in bacteria. Studies have subsequently shown that these proteins are able to modulate mammalian immune signalling pathways dependent on TIR interactions and that this may represent an evasion strategy for bacterial pathogens. Here, we investigate a TIR domain protein from the highly virulent bacterium Yersinia pestis, the causative agent of plague. When overexpressed in vitro this protein is able to downregulate IL-1ß- and LPS-dependent signalling to NFκB and to interact with the TIR adaptor protein MyD88. This interaction is dependent on a single proline residue. However, a Y. pestis knockout mutant lacking the TIR domain protein was not attenuated in virulence in a mouse model of bubonic plague. Minor alterations in the host cytokine response to the mutant were indicated, suggesting a potential subtle role in pathogenesis. The Y. pestis mutant also showed increased auto-aggregation and reduced survival in high-salinity conditions, phenotypes which may contribute to pathogenesis or survival.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interleucina-1/metabolismo , Peste/metabolismo , Peste/microbiología , Receptores Toll-Like/metabolismo , Yersinia pestis/metabolismo , Yersinia pestis/patogenicidad , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Peste/genética , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Transducción de Señal , Receptores Toll-Like/genética , Virulencia , Yersinia pestis/química , Yersinia pestis/genética
13.
Microb Pathog ; 51(6): 471-5, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21798336

RESUMEN

A variety of studies have implicated neutrophils and the rapid induction of cytokine in the host response in melioidosis. Here a BALB/c mouse model of infection with aerosolised Burkholderia pseudomallei K96243 has been used to understand the immune response to infection in this model and verify other infection models that show rapid growth of bacteria, colonisation of tissues and periphery, induction of cytokines and influx of neutrophils. Uniquely, this study has also determined the association of B. pseudomallei to host cells in vivo using flow cytometric techniques. Neutrophils were found to be the predominant cell-type exhibiting B. pseudomallei antigens during infection and it is likely that bacteria have been internalised. This data confirms that neutrophils are likely to play an important and active role in fighting infection with B. pseudomallei.


Asunto(s)
Burkholderia pseudomallei/inmunología , Melioidosis/inmunología , Neutrófilos/inmunología , Infecciones del Sistema Respiratorio/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Melioidosis/microbiología , Ratones , Ratones Endogámicos BALB C , Infecciones del Sistema Respiratorio/microbiología
14.
Microb Pathog ; 51(3): 89-95, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21640812

RESUMEN

Recent research has highlighted the presence of Toll/Interleukin 1 receptor (TIR)-domain proteins (Tdps) in a range of bacteria, suggested to form interactions with the human adaptor protein MyD88 and inhibit intracellular signaling from Toll-like receptors (TLRs). A Tdp has been identified in Yersinia pestis (YpTdp), a highly pathogenic bacterium responsible for plague. Expression of a number of YpTIR constructs of differing lengths (YpTIR1, S130-A285; YpTIR2, I137-I273; YpTIR3, I137-246; YpTIR4, D107-S281) as fusions with an N-terminal GB1 tag (the B1 immunoglobulin domain of Streptococcal protein G) yielded high levels of soluble protein. Subsequent purification yielded 4-6 mg/L pure, folded protein. Thrombin cleavage allowed separation of the GB1 tag from YpTIR4 resulting in folded protein after cleavage. Nuclear magnetic resonance spectroscopy, size exclusion chromatography, SDS-PAGE analysis and static light scattering all indicate that the YpTIR forms dimers. Generation of a double Cys-less mutant resulted in an unstable protein containing mainly monomers indicating the importance of disulphide bonds in dimer formation. In addition, the YpTIR constructs have been shown to interact with the human adaptor protein MyD88 using 2D NMR and GST pull down. YpTIR is an excellent candidate for further study of the mechanism of action of pathogenic bacterial Tdps.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Factor 88 de Diferenciación Mieloide/metabolismo , Mapeo de Interacción de Proteínas , Yersinia pestis/patogenicidad , Secuencia de Aminoácidos , Disulfuros/metabolismo , Humanos , Datos de Secuencia Molecular , Unión Proteica , Multimerización de Proteína , Alineación de Secuencia
15.
PLoS One ; 16(3): e0248119, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33764972

RESUMEN

Burkholderia pseudomallei is a soil-dwelling organism present throughout the tropics. It is the causative agent of melioidosis, a disease that is believed to kill 89,000 people per year. It is naturally resistant to many antibiotics, requiring at least two weeks of intravenous treatment with ceftazidime, imipenem or meropenem followed by 6 months of orally delivered co-trimoxazole. This places a large treatment burden on the predominantly middle-income nations where the majority of disease occurs. We have established a high-throughput assay for compounds that could be used as a co-therapy to potentiate the effect of ceftazidime, using the related non-pathogenic bacterium Burkholderia thailandensis as a surrogate. Optimization of the assay gave a Z' factor of 0.68. We screened a library of 61,250 compounds and identified 29 compounds with a pIC50 (-log10(IC50)) greater than five. Detailed investigation allowed us to down select to six "best in class" compounds, which included the licensed drug chloroxine. Co-treatment of B. thailandensis with ceftazidime and chloroxine reduced culturable cell numbers by two orders of magnitude over 48 hours, compared to treatment with ceftazidime alone. Hit expansion around chloroxine was performed using commercially available compounds. Minor modifications to the structure abolished activity, suggesting that chloroxine likely acts against a specific target. Finally, an initial study demonstrates the utility of chloroxine to act as a co-therapy to potentiate the effect of ceftazidime against B. pseudomallei. This approach successfully identified potential co-therapies for a recalcitrant Gram-negative bacterial species. Our assay could be used more widely to aid in chemotherapy to treat infections caused by these bacteria.


Asunto(s)
Antibacterianos/farmacología , Infecciones por Burkholderia/tratamiento farmacológico , Burkholderia/efectos de los fármacos , Ceftazidima/farmacología , Cloroquinolinoles/farmacología , Burkholderia pseudomallei/efectos de los fármacos , Descubrimiento de Drogas , Sinergismo Farmacológico , Humanos , Melioidosis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
16.
Microb Pathog ; 48(5): 191-5, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20096773

RESUMEN

There is a need to develop effective countermeasures for Yersinia pestis, the etiologic agent of plague and a potential bioterrorism agent. Salmonella and Shigella spp. deleted in the guaBA genes involved in guanine biosynthesis have been shown to be attenuated in vivo. In this study, we sought to determine whether deletion of the guaBA operon would render Y. pestis auxotrophic for guanine and avirulent; such a strain could serve as a live attenuated plague vaccine candidate. A Y. pestis guaBA mutant was generated by specific deletion of a segment of the guaBA operon, producing a guanine auxotroph that was highly attenuated in a mouse model of Y. pestis infection. Furthermore, mice vaccinated with a single dose of 7x10(4)CFU via the intravenous route were fully protected against subsequent lethal challenge with the Y. pestis parental strain. These findings identify guaBA as a target for deletion to generate a live attenuated plague vaccine.


Asunto(s)
Vacuna contra la Peste/inmunología , Peste/microbiología , Peste/prevención & control , Yersinia pestis/inmunología , Yersinia pestis/patogenicidad , Animales , Femenino , Eliminación de Gen , Guanina/biosíntesis , Ratones , Ratones Endogámicos BALB C , Operón , Peste/inmunología , Vacuna contra la Peste/genética , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Virulencia , Factores de Virulencia/genética , Yersinia pestis/genética
17.
Biochem Biophys Rep ; 23: 100773, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32548313

RESUMEN

Increasing resistance of bacteria to antibiotics is a serious global challenge and there is a need to unlock the potential of novel antibacterial targets. One such target is the essential prokaryotic endoribonuclease RNase E. Using a combination of in silico high-throughput screening and in vitro validation we have identified three novel small molecule inhibitors of RNase E that are active against RNase E from Escherichia coli, Francisella tularensis and Acinetobacter baumannii. Two of the inhibitors are non-natural small molecules that could be suitable as lead compounds for the development of broad-spectrum antibiotics targeting RNase E. The third small molecule inhibitor is glucosamine-6-phosphate, a precursor of bacterial cell envelope peptidoglycans and lipopolysaccharides, hinting at a novel metabolite-mediated mechanism of regulation of RNase E.

18.
Microb Pathog ; 46(4): 201-6, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19490834

RESUMEN

Live attenuated bacteria provide the potential to replace traditional needle-based vaccination with an orally administered vaccine. The heterologous antigen gene is usually transformed as a multi-copy plasmid into the bacterial cell, but plasmids in live bacterial vaccine strains are often unstable, so an alternative approach is to integrate the single-copy antigen gene into the bacterial chromosome. We report a comparison between the chromosomally integrated and the plasmid-borne Bacillus anthracis protective antigen gene in live Salmonella enterica serovar Typhimurium, using the Operator-Repressor Titration (ORT) system to ensure stable plasmid maintenance. These studies demonstrate that the stabilised plasmid approach of gene expression produced greater amounts of antigenic protein, which in turn resulted in higher antibody responses and levels of protection in mice.


Asunto(s)
Vacunas contra el Carbunco/inmunología , Carbunco/prevención & control , Antígenos Bacterianos/inmunología , Toxinas Bacterianas/inmunología , Vectores Genéticos , Inestabilidad Genómica , Plásmidos , Salmonella typhimurium/genética , Animales , Vacunas contra el Carbunco/genética , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/genética , Toxinas Bacterianas/genética , Femenino , Ratones , Análisis de Supervivencia
19.
J Med Microbiol ; 58(Pt 7): 923-929, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19502364

RESUMEN

This study was undertaken to determine the antibacterial activity of eight cationic antimicrobial peptides towards strains of genomovars I-V of the Burkholderia cepacia complex (Bcc) in time-kill assays. All but one of the peptides failed to show activity against the panel of test strains. The exception was magainin II, a 23 aa peptide isolated from the epidermis of the African clawed frog, Xenopus laevis, which exhibited significant bactericidal activity for Bcc genomovars most frequently associated with lung infection of patients with cystic fibrosis. In vitro studies indicated that magainin II protected a human bronchial epithelial cell line (BEAS-2B) from killing by Bcc and suggest that this peptide may have therapeutic potential against these organisms.


Asunto(s)
Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Complejo Burkholderia cepacia/efectos de los fármacos , Proteínas de Xenopus/farmacología , Secuencia de Aminoácidos , Antiinfecciosos/química , Péptidos Catiónicos Antimicrobianos/química , Apoptosis , Línea Celular , Estabilidad de Medicamentos , Células Epiteliales/microbiología , Humanos , L-Lactato Deshidrogenasa/metabolismo , Magaininas , Péptido Hidrolasas/metabolismo , Mucosa Respiratoria/citología , Factores de Tiempo , Proteínas de Xenopus/química
20.
Comp Funct Genomics ; : 354649, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20169092

RESUMEN

Brucellosis is a prevalent zoonotic disease and is endemic in the Middle East, South America, and other areas of the world. In this study, complete inventories of putative functional ABC systems of five Brucella species have been compiled and compared. ABC systems of Brucella melitensis 16M, Brucella abortus 9-941, Brucella canis RM6/66, Brucella suis 1330, and Brucella ovis 63/290 were identified and aligned. High numbers of ABC systems, particularly nutrient importers, were found in all Brucella species. However, differences in the total numbers of ABC systems were identified (B. melitensis, 79; B. suis, 72; B. abortus 64; B. canis, 74; B. ovis, 59) as well as specific differences in the functional ABC systems of the Brucella species. Since B. ovis is not known to cause human brucellosis, functional ABC systems absent in the B. ovis genome may represent virulence factors in human brucellosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA