Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biochem Mol Toxicol ; 37(4): e23299, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36647602

RESUMEN

Breast cancer is one of the most common cancers worldwide and the discovery of new cytotoxic agents is needed. Enaminones are regarded to be a significant structural motif that is found in a variety of pharmacologically active compounds however the number of studies investigating the anticancer activities of N-propargylic ß-enaminones (NPEs) is limited. Herein we investigated the potential cytotoxic and apoptotic effects of 23 different NPEs (1-23) on human breast cancer cells. Cytotoxicity was evaluated via MTT assay. Apoptotic cell death and cell cycle distributions were investigated by flow cytometry. CM-H2DCFDA dye was used to evaluate cellular ROS levels. Expression levels of Bcl-2, Bax, p21, and Cyclin D1 were measured by quantitative real-time PCR. ADME properties were calculated using the ADMET 2.0 tool. NPEs 4, 9, 16, and 21 showed selective cytotoxic activity against breast cancer cells with SI values >2. NPEs induced apoptosis and caused significant changes in Bcl-2 and Bax mRNA levels. The cell cycle was arrested at the G0/G1 phase and levels of p21 and Cyclin D1 were upregulated in both breast cancer cells. ROS levels were significantly increased by NPEs, suggesting that the cytotoxic and apoptotic effects of NPEs were mediated by ROS. ADME analysis revealed that NPEs showed favorable distributions in both breast cancer cell lines, meaning good lipophilicity values, low unfractionated values, and high bioavailability. Therefore, these potential anticancer compounds should be further validated by in vivo studies for their appropriate function in human health with a safety profile, and a comprehensive drug interaction study should be performed.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Ciclina D1/genética , Línea Celular Tumoral , Proteína X Asociada a bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Ciclo Celular , Proliferación Celular
2.
Mol Divers ; 27(4): 1703-1712, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36065037

RESUMEN

Bcl-2, an anti-apoptotic protein, is a well-known and appealing cancer therapy target. Novel series of benzimidazole derivatives were synthesized and tested for their activity as Bcl-2 inhibitors on T98G glioblastoma, PC3 prostate, MCF-7 breast, and H69AR lung cancer cells. MTT assay was used to evaluate the cytotoxic effect. PI Annexin V Apoptosis Detection Kit was used to detect apoptosis. Expression levels of the Bcl-2 protein were examined by the Western blot analysis and qRT-PCR. All synthesized benzimidazole derivatives exhibited a cytotoxic effect on cancer cells with IC50 values in the range of 25.2-88.2 µg/mL. Among all derivatives, compounds C1 and D1 demonstrated a higher cytotoxic effect on cancer cells with IC50 values < 50 µg/mL, while a lower cytotoxic effect against human embryonic kidney cells with IC50 values of > 100 µg/mL. C1 and D1 caused a significant increase in the percentage of apoptotic cells in all types of cancer cell cells and both Bcl-2 mRNA and protein levels were significantly reduced. These results suggest that the novel benzimidazole derivatives may be candidates for apoptosis-inducing agents in cancer treatment by targeting anti-Bcl-2 proteins in cancer cells.


Asunto(s)
Antineoplásicos , Humanos , Línea Celular Tumoral , Antineoplásicos/farmacología , Apoptosis , Bencimidazoles/farmacología , Proliferación Celular
3.
Chem Biodivers ; 20(11): e202301228, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37837366

RESUMEN

The study aimed to investigate the in vitro inhibitory activities of spiro N-propargylic ß-enaminones, SPEs 1-31, against BCa cells, to perform in silico molecular docking studies to understand the nature of the interaction between the compounds and the ERα, PR, EGFR, and Her2, and to determine the ADMET and drug-likeness properties. Cytotoxic activity was investigated via MTT assay. DNA fragmentation was evaluated via ELISA assay. Cell cycle distributions were investigated by flow cytometry. Expression levels of Bcl-2, Bax, p21 and Cyclin D1 were measured by qRT-PCR and western blot analysis. Molecular docking was done using Autodock/vina software. ADMET analysis was calculated using the ADMETlab 2.0 tool. SPEs 1, 22, and 28 showed selective cytotoxic activity against all BCa cells with SI values >2. SPEs induced apoptosis and caused significant changes in Bcl-2 and Bax levels. The cell cycle was arrested at the S phase and levels of p21 and Cyclin D1 were induced in all BCa cells. Molecular docking analysis revealed that SPE1, SPE22, and SPE28 showed high binding affinities with ERα, PR, EGFR, and Her2. ADMET analysis revealed that SPEs are drug-like compounds as they obey the five rules of Lipinsky and are not toxic. Therefore, these potential anticancer compounds should be further validated by in vivo studies for their appropriate function in human health with a safety profile, and a comprehensive drug interaction study should be performed.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Receptor alfa de Estrógeno , Ciclina D1/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Antineoplásicos/química , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Apoptosis , Proliferación Celular , Relación Estructura-Actividad
4.
Andrologia ; 54(11): e14599, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36168116

RESUMEN

Trabectedin is a chemotherapy agent originating from a tunicate, Ecteinascidia turbinata. In this study, DNA-independent action mechanisms of trabectedin are investigated in prostate cancer (PCa) cells. Cell viability was assessed via XTT assay. Apoptosis was evaluated via flow cytometry. Tetramethylrodamine ethyl ester (TMRE) dye was utilized to determine mitochondrial membrane potential (MMP). Cell cycle distribution was investigated via flow cytometric analysis. Reactive oxygen species (ROS) were monitored using fluorescence CM-H2DCFDA dye. Changes in CHOP, p-eIF2α, GRP78 and p-PERK which are endoplasmic reticulum (ER) stress-involved proteins were investigated via western blot. Trabectedin induced cytotoxicity and cell cycle arrest at the G2/M phase. Trabectedin decreased MMP via ROS generation in PCa cells. ER stress-related proteins CHOP, p-eIF2α, GRP78 and p-PERK were also elevated by trabectedin treatment indicating the induction of ER stress-induced apoptosis. The results of this study show that trabectedin may be an effective chemotherapeutic for PCa.


Asunto(s)
Estrés del Retículo Endoplásmico , Neoplasias de la Próstata , Masculino , Humanos , Trabectedina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Apoptosis , Neoplasias de la Próstata/tratamiento farmacológico
5.
Chem Biodivers ; 19(7): e202200123, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35785434

RESUMEN

Heterocyclic compounds have emerged as promising and appealing scaffolds for developing effective antitumor agents. Here, the effects of synthesized 24 different 1-pyrroline derivatives (PDs) containing substituted aryl sulfide moiety were investigated on human breast cancer cell lines. The viability of cells was assessed via MTT assay. Reactive oxygen species (ROS) generation was analyzed via fluorescent dye CM-H2DCFDA. Apoptotic cells were determined via flow cytometry. Endoplasmic reticulum (ER) stress-associated protein levels were analyzed via western blot analysis. Four of the PDs (PD-12, -14, -16 and -17) had great cytotoxic selectivity against breast cancer cells. Apoptotic cell death was induced by PDs via the generation of ROS. PDs significantly increased the GRP78, p-PEAK, p-eIF2α, and CHOP protein levels indicating ER stress in breast cancer cells. These results imply that newly synthesized PDs may be potential anticancer agents as they selectively inhibit breast cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Antineoplásicos/farmacología , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Estrés del Retículo Endoplásmico , Femenino , Humanos , Pirroles/farmacología , Especies Reactivas de Oxígeno/metabolismo
6.
Int J Environ Health Res ; 32(5): 1011-1019, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-32909456

RESUMEN

Liquidambar orientalis Mill (LOM), is an endemic species having a local distribution in the southwestern coastal district of Turkey. Styrax liquidus gum (SLG), is a gum-like resinous which exudates in response to injury of the trunk of LOM. The aim of the study was to investigate the cytotoxic effects and the molecular mechanisms of the ethanolic SLG extract in human prostate cancer cells. GC-MS analysis was performed to identify the volatile compound composition. Cytotoxicity was determined by XTT analysis. Apoptosis and necrosis were evaluated via ELISA assay. Autophagic cell death was detected via monodansylcadaverine (MDC) staining and by measuring the levels of LC3I and LC3II. The protein levels of p-PI3K, p-Akt and p-mTOR were evaluated by western blot analysis. In the present study, it is shown that the SLG extract containing a considerable amount of ravidomycin derivate induced autophagic cell death in prostate cancer cells via inhibiting the PI3K/Akt/mTOR pathway.


Asunto(s)
Liquidambar , Neoplasias de la Próstata , Apoptosis , Autofagia , Humanos , Liquidambar/metabolismo , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/farmacología
7.
Arch Pharm (Weinheim) ; 354(10): e2100170, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34165807

RESUMEN

Novel pyrrole derivatives (PDs) with propargyl units (1-7) were investigated for their anticancer activity on breast cancer cells. The MTT assay was used to assess the cell viability. Morphological changes in human breast cancer cells were visualized under a phase-contrast microscope. Apoptosis and autophagy were detected using the DNA fragmentation assay and staining by autophagic vacuoles, respectively. The levels of apoptosis- and autophagy-related proteins such as cytochrome c, Bcl-2, LC3-I/II were investigated by Western blot analysis. The effect of PDs on the ERK1/2 signaling pathway was investigated using specific inhibitors. All the tested PDs were found to be active in the range of 36.7 ± 0.2 to 459.7 ± 4.2 µM. Compounds 3 and 4 showed cytotoxic activity in breast cancer cells, but were found to be safer with lower cytotoxicity on human nontumorigenic epithelial breast cells. Compound 4 induced apoptosis, whereas compound 3 induced autophagy. Both compounds inhibited the ERK signaling pathway in breast cancer cells. The present study revealed that both synthesized PDs induced different programmed cell death types by inhibiting the ERK signaling pathway in two genotypically different breast cancer cells. Therefore, novel PDs might be promising anticancer agents for breast cancer therapy and further structural modifications of PDs may yield promising anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Pirroles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Autofagia/efectos de los fármacos , Neoplasias de la Mama/patología , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Pirroles/síntesis química , Pirroles/química , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
8.
Future Oncol ; 16(3): 4485-4495, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31829029

RESUMEN

Aim: AT-101 is a polyphenolic compound with potent anti-apoptotic effects in various cancers. In this study, the possible synergistic cytotoxic and apoptotic effect of trastuzumab/AT-101 combination was investigated in HER2-positive breast cancer cell lines. Materials & methods: SKBR-3, MDA-MB-453 and MCF-10A cell lines were treated with a trastuzumab/AT-101 combination. Synergistic cytotoxicity and apoptosis effects were shown and then PI3K and Akt protein levels were studied. Result: The trastuzumab/AT-101 combination induced synergistic cytotoxicity and apoptosis in both breast cancer cells but not in MCF-10A cells. Combination treatment induced cytotoxicity via inhibiting PI3K/AKT but not the MAPK/ERK pathway. Conclusion: The trastuzumab/AT-101 combination may be a good candidate for patients with trastuzumab-resistant Her2-positive breast cancer and inhibition of the PI3K/AKT pathway may be one of the underlying mechanisms.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Gosipol/análogos & derivados , Trastuzumab/farmacología , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Femenino , Gosipol/farmacología , Gosipol/uso terapéutico , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Transducción de Señal/efectos de los fármacos , Trastuzumab/uso terapéutico
9.
Clin Oral Investig ; 21(3): 763-769, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27129587

RESUMEN

OBJECTIVES: hCAP18/LL-37 is an endogenous antibiotic having a role in innate immunity. The aim of the present study was to evaluate serum and gingival crevicular fluid (GCF) hCAP18/LL-37 levels in patients with generalized aggressive periodontitis (G-AgP). MATERIALS AND METHODS: Twenty-six G-AgP patients, 24 gingivitis patients, and 25 healthy subjects were included in this study. Periodontal parameters including probing depth, clinical attachment level, plaque index, and papilla bleeding index were recorded. GCF and serum hCAP18/LL-37 levels were analyzed by enzyme-linked immunosorbent assay. RESULTS: GCF hCAP18/LL-37 level was significantly higher in G-AgP compared to others (p = 0.038, p < 0.001). Gingivitis patients had significantly higher GCF hCAP18/LL-37 levels than controls (p < 0.001). No significant differences were observed in serum hCAP18/LL-37 levels among the study groups (p = 0.524). While there were positive correlations between GCF hCAP18/LL-37 levels and periodontal parameters of sampling sites (p < 0.005), no significant correlation was observed between serum hCAP18/LL-37 levels and whole-mouth periodontal parameters (p > 0.05). CONCLUSION: Increased levels of GCF hCAP18/LL-37 in G-AgP might show that it is abundantly expressed in the presence of periodontal tissue destruction. Serum hCAP18/LL-37 levels do not seem to be related with the presence of G-AgP. CLINICAL RELEVANCE: hCAP18/LL-37 antimicrobial peptide might be associated with periodontal tissue destruction in the presence of aggressive periodontitis.


Asunto(s)
Periodontitis Agresiva/inmunología , Péptidos Catiónicos Antimicrobianos/clasificación , Péptidos Catiónicos Antimicrobianos/inmunología , Líquido del Surco Gingival/inmunología , Adolescente , Adulto , Estudios de Casos y Controles , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Catelicidinas
10.
Tumour Biol ; 37(3): 3639-46, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26459311

RESUMEN

Plants, due to their remarkable composition, are considered as natural resources of bioactive compounds with specific biological activities. Salvia genus (Lamiaceae) has been used around the world in complementary medicine since ancient times. We investigated the cytotoxic, apoptotic and anti-angiogenic effects of methanolic Salvia triloba extract (STE) in prostate cancer cells. Cell viability was evaluated by XTT; apoptosis was investigated by DNA fragmentation and caspase 3/7 activity assays. Changes in the angiogenic cytokine levels were investigated by human angiogenesis antibody array. Scratch assay was used to determine the cell motility. STE induced cytotoxicity and apoptosis in a concentration-dependent manner in both cancer cells; however, it was not cytotoxic to normal cells. Cell motility was reduced in PC-3, DU-145 and HUVEC cells by STE treatment. ANG, ENA-78, bFGF, EGF, IGF-1 and VEGF-D levels were significantly decreased by -2.9, -3.7, -1.7, -1.7, -2.0 and -1.8 fold in STE-treated DU-145 cells, however, ANG, IL-8, LEP, RANTES, TIMP-1, TIMP-2 and VEGF levels were significantly decreased by -5.1, -2.0, -2.4, -3.1, -1.5, -2.0 and -2.5 fold in PC-3 cells. These data suggest that STE might be a promising candidate for anti-tumor and anti-angiogenic treatment of prostate cancer.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Apoptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Salvia/química , Western Blotting , Canfanos , Línea Celular , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Técnica del Anticuerpo Fluorescente , Humanos , Masculino , Neovascularización Patológica/metabolismo , Neovascularización Patológica/prevención & control , Panax notoginseng , Neoplasias de la Próstata/irrigación sanguínea , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Salvia miltiorrhiza , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
Tumour Biol ; 37(4): 4939-44, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26531719

RESUMEN

Prostate cancer (PCa) is the most common type of cancer among males. Although survival rate of early-stage PCa is high, treatment options are very limited for recurrent disease. In this study, the possible synergistic cytotoxic and apoptotic effect of octreotide in combination with AT-101 was investigated in DU-145 hormone and drug refractory prostate cancer cell line. To enlighten the action mechanisms of the combination treatment, expression levels of somatostatin receptors 2 and 5 (SSTR2 and SSTR5) were also investigated. Cell viability was measured by XTT assay. Apoptosis was assessed through DNA fragmentation analysis and caspase 3/7 assay. mRNA and protein levels of SSTR2 and SSTR5 were evaluated by qRT-PCR and western blot analysis, respectively. Octreotide in combination with AT-101 inhibited cell viability and induced apoptosis synergistically in DU-145 cells as compared to any agent alone. Combination treatment increased both SSTR2 and SSTR5 mRNA and protein levels in DU-145 cells. The data suggest that this combination therapy may be a good candidate for patients with advanced metastatic PCa do not respond to androgen deprivation.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Receptores de Somatostatina/biosíntesis , Andrógenos/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Gosipol/administración & dosificación , Gosipol/análogos & derivados , Humanos , Masculino , Octreótido/administración & dosificación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Receptores de Somatostatina/genética
12.
Tumour Biol ; 37(3): 3665-73, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26462835

RESUMEN

The aim of this study was to investigate the cytotoxic and apoptotic effects of zoledronic acid (ZA) in combination with serine/threonine protein phosphatase inhibitors, calyculin-A (CA) and okadaic acid (OA), in human MCF-7 and MDA-MB-231 breast cancer cells. XTT cell viability assay was used to evaluate cytotoxicity. DNA fragmentation and caspase-3/7 activity assays were performed to evaluate apoptosis. Activities of phosphatase 1 (PP1) and phosphatase 2A (PP2A) were measured by serine/threonine phosphatase ELISA kit. Expression levels of PI3K, p-PI3K, Akt, p-Akt, Bcl-2, p-Bcl-2, Bad, and p-Bad proteins were evaluated by Western blot analysis. Combination of ZA with either CA or OA showed synergistic cytotoxicity and apoptosis as compared to any agent alone in both MCF-7 and MDA-MB-231 breast cancer cells. Combination treatment also resulted in inhibition of both PP1 and PP2A activities. Both agents used alone or in combination did not induce significant changes in total PI3K, Akt, Bcl-2, and Bad expressions, while p-PI3K, p-Akt, p-Bcl-2, and p-Bad levels were reduced by the combination treatment as compared to agents alone. Moreover, apoptotic effect of combination treatment was significantly inhibited in the presence of LY294002, a specific PI3K inhibitor, in both breast cancer cell lines. In conclusion, synergistic apoptotic effect of the combination treatment is correlated with the block of the PI3K/Akt signal pathway in breast cancer cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Difosfonatos/farmacología , Inhibidores Enzimáticos/farmacología , Imidazoles/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Western Blotting , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Femenino , Humanos , Células MCF-7 , Toxinas Marinas , Ácido Ocadaico/farmacología , Oxazoles/farmacología , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Fosfoproteínas Fosfatasas/metabolismo , Ácido Zoledrónico
13.
Platelets ; 27(5): 427-32, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26830681

RESUMEN

Platelet-rich fibrin (PRF) has a controlled release of growth factors due to the fibrin matrix structure. Different centrifugation protocols were suggested for PRF preparation. Since the derivation method of PRF can alter its contents, in the present study it is aimed to investigate the cell contents and transforming growth factor beta-1 (TGF-ß1), platelet-derived growth factor (PDGF-AB), vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-1 and-8 release from experimental PRF-type membranes obtained with different centrifugation times at 400 gravity. Three blood samples were collected from 20 healthy non-smoker volunteers. One tube was used for whole blood analyses. The other two tubes were centrifuged at 400 g for 10 minutes (group A) or 12 minutes (group B). Each experimental PRF-type membrane was placed in Dulbecco's Modified Eagle's Medium (DMEM)and at 1, 24 and 72 hours, TGF-ß1, PDGF-AB, VEGF, MMP-1 and -8 release amounts were analysed by enzyme-linked immunosorbent assay (ELISA). The blood cell count of membranes was determined by subtracting plasma supernatant and red blood cell (RBC) mixture from the whole blood cell counts. At 72 hours, the VEGF level of group B was statistically higher than that of group A (p = 0.040). The centrifugation time was not found to influence the release of other growth factors, enzymes and cell counts. Within the limits of the present study, it might be suggested that centrifugation time at a constant gravity has a significant effect on the VEGF levels released from experimental PRF-type membrane. It can be concluded that due to the importance of VEGF in the tissue healing process, membranes obtained at 12-minute centrifugation time may show a superior potential in wound healing.


Asunto(s)
Plaquetas/metabolismo , Centrifugación , Fibrina , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Plasma Rico en Plaquetas , Adulto , Biomarcadores , Recuento de Células Sanguíneas , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Enfermedades Periodontales/sangre , Adulto Joven
14.
Tumour Biol ; 36(2): 779-86, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25293519

RESUMEN

Our aim was to investigate the possible synergistic/additive cytotoxic and apoptotic effects of combination of docetaxel and zoledronic acid (ZA), in PC-3 hormone-refractory prostate cancer cells (HRPC), as well as their docetaxel-resistant sublines. We established a docetaxel-resistant cell line (PC-3R) from PC-3 prostate cancer cells, by intermittent exposure to increasing concentrations of docetaxel in vitro. We then examined the effect of ZA and docetaxel on cell proliferation in both PC-3 and PC-3R prostate cancer cells. XTT cell proliferation assay was used to assess the cytotoxicity, and DNA fragmentation and caspase 3/7 enzyme activity were measured to verify apoptosis. According to our results, docetaxel and ZA were found to be synergistically cytotoxic and apoptotic in both PC-3 and docetaxel-resistant PC-3R cells, in a dose- and time-dependent manner. Combined treatment with docetaxel and ZA synergistically inhibited PC-3 cell growth in vitro through an enhanced induction of cell death, compared with either agent alone; this result was also evident on PC-3R cells. Moreover, we have also demonstrated that apoptosis was induced in prostate cancer cells exposed to these drugs by a concentration-dependent increase in DNA fragmentation and caspase 3/7 enzyme activity. We concluded that ZA, either with docetaxel or not, might still exert some cytotoxicity even in docetaxel-resistant cells. From the clinical perspective, when the clinician decided to change the treatment in the post-docetaxel setting, continuing or combination with ZA may be an effective therapeutic approach for the treatment of HRPC patients.


Asunto(s)
Difosfonatos/administración & dosificación , Imidazoles/administración & dosificación , Neoplasias Hormono-Dependientes/tratamiento farmacológico , Neoplasias de la Próstata/tratamiento farmacológico , Taxoides/administración & dosificación , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Docetaxel , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Masculino , Neoplasias Hormono-Dependientes/genética , Neoplasias Hormono-Dependientes/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Ácido Zoledrónico
15.
J BUON ; 19(4): 1055-61, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25536616

RESUMEN

PURPOSE: Thymoquinone (TQ), an active ingredient of black seed oil (Nigella Sativa), has been shown to possess cytotoxic activity against a variety of cancer cell lines. Our purpose was to investigate if the cytotoxic and apoptotic effect of zoledronic acid (ZA) can be enhanced by the addition of the TQ in hormone- and drug-refractory prostate cancer cells PC-3 and DU-145. METHODS: XTT cell proliferation assay was used to assess cytotoxicity; DNA fragmentation and caspase 3/7 activity were also measured. RESULTS: The combination of TQ and ZA resulted in a significant synergistic cytotoxic activity and DNA fragmentation when compared to any single agent alone, in a dose- and time-dependent manner. In addition, TQ and ZA combination increased the caspase 3/7 activity in PC-3 cell line, while this activity could not be demonstrated in DU-145 cell line. CONCLUSION: TQ and ZA had minimal hematological and non-hematological toxicity profile compared to cytotoxic agents. So, this combination may be an alternative approach for patients who are unable to be treated by conventional treatments because of poor performance status.


Asunto(s)
Antineoplásicos/farmacología , Benzoquinonas/farmacología , Difosfonatos/farmacología , Imidazoles/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Humanos , Masculino , Ácido Zoledrónico
16.
Z Naturforsch C J Biosci ; 79(5-6): 95-105, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38478126

RESUMEN

Although chemotherapy is still the most preferred treatment for cancer, most chemotherapeutic agents target both cancer cells and healthy cells and cause serious side effects due to high toxicity. Improved drug delivery systems (DDSs), which enhance the efficacy of current chemotherapeutic drugs while reducing their toxicity, offer potential solutions to these challenges. Chitosan (CS) and its derivatives are biopolymers with biodegradable, biocompatible, and low-toxicity properties, and their structure allows for convenient chemical and mechanical modifications. In its role as a therapeutic agent, CS can impede the proliferation of tumor cells through the inhibition of angiogenesis and metastasis, as well as by triggering apoptosis. CS and its derivatives are also frequently preferred as DDSs due to their properties such as high drug-carrying capacity, polycationic structure, long-term circulation, and direct targeting of cancer cells. Various therapeutic agents linked to CS and its derivatives demonstrate potent anticancer effects with advantages such as reduced side effects compared to the original drugs, owing to factors like targeted distribution within cancer tissues and sustained release. This review emphasizes the utilization of CS and its derivatives, both as therapeutic agents and as carriers for established chemotherapeutic drugs.


Asunto(s)
Antineoplásicos , Quitosano , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Neoplasias , Quitosano/química , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Portadores de Fármacos/química , Animales , Apoptosis/efectos de los fármacos
17.
Environ Toxicol Pharmacol ; 105: 104352, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141841

RESUMEN

This study aimed to investigate the effects of 24 and 72 h exposure to environmentally relevant concentrations of tebuconazole (TEB) (10, 100 and 500 µg/L) fungicide on the freshwater snail Lymnaea stagnalis. The focus was induction of oxidative stress, alteration of gene expressions and histopathological changes in the kidney and digestive gland. TEB treatment induced a time- and concentration-dependent increase in intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels, while the total antioxidant capacity (TAC) was decreased. The activities of glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT) also increased in a time- and concentration-dependent manner in both tissues. TEB exposure significantly increased the mRNA levels of CAT, GPx, GR, heat shock proteins HSP40 and HSP70. Histological analysis revealed nephrocyte degeneration and disrupted digestive cells. The study concludes that acute exposure to TEB induces oxidative stress, alters antioxidant defense mechanisms, and leads to histopathological changes in L. stagnalis.


Asunto(s)
Antioxidantes , Lymnaea , Triazoles , Animales , Antioxidantes/farmacología , Estrés Oxidativo , Catalasa/metabolismo , Glutatión Reductasa/metabolismo , Glutatión Peroxidasa/metabolismo , Riñón/metabolismo
18.
Curr Top Med Chem ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38676490

RESUMEN

Although immunotherapy and targeted therapy have radically changed melanoma treatment, the development of resistance and reduction of patient responses are still significant problems. Small molecule inhibitors are needed to overcome this situation, and biomarkers that can estimate whether patients will reply to existing treatments need to be developed. miRNAs are involved in diverse processes such as tumor development, tumor progression, metastasis, and invasion. While some miRNAs act as tumor suppressors, others may be oncogenic. miRNAs also contribute to the processes involved in drug resistance. There is increasing evidence demonstrating the possible effect of miRNAs on the diagnosis and treatment markers of melanoma. The manuscript focuses on the current challenges in melanoma treatment, highlighting issues such as the development of resistance and reduced patient responses despite the revolutionary advancements in targeted therapy and immunotherapy. It underscores the need for small molecule inhibitors and the creation of biomarkers for predicting patient responses to current treatments. The role of miRNAs in processes such as tumor development, metastasis, and invasion has been highlighted. While certain miRNAs function as tumor suppressors, others may exhibit oncogenic properties. Furthermore, increasing evidence is presented demonstrating the potential significance of miRNAs as markers for the symptom and identification of melanoma. These findings indicate a promising avenue for future research and clinical applications. In summary, the article effectively communicates key insights, making it a valuable resource for those interested in melanoma research and treatment.

19.
Biomater Adv ; 158: 213782, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38377664

RESUMEN

In the study, the fabrication of superparamagnetic-fluorescent bioactive glasses in the form of the particle, nanofiber, and 3D scaffolds was performed by including maghemite (γ-Fe2O3) nanoparticles and photoluminescent rare earth element ions (Eu3+, Gd3+, and Yb3+) using sol-gel, electrospinning, and robocasting techniques, respectively. The in vitro cytotoxicity of the magnetic-fluorescent bioactive glasses on osteosarcoma SaOS-2, pre-osteoblast MC3T3-E1, and BJ fibroblast cells, as well as their hemolytic activity and sorafenib tosylate loading and release behavior, were investigated. The cytotoxicity of the bioactive glass samples was tested using the MTT assay. Additionally, the alkaline phosphatase activity of the studied glasses was examined as a function of time. The mineralization behavior of the pre-osteoblast cell-seeded glass samples was analyzed using Alizarin red S staining. Results revealed that the in vitro cytotoxicity of the studied bioactive glasses in the form of particles and nanofibers depended on the sample concentration, whereas in the case of the 3D scaffolds, no cytotoxic response was observed on the osteosarcoma, pre-osteoblast, and fibroblast cells. Similarly, particle and nanofiber-based glass samples induced dose-dependent hemolysis on red blood cells. Drug loading rates were much lower for the 3D scaffolds compared to the particle and nanofiber-based samples. Drug release rates ranged from 25 % to 90 %, depending on the bioactive glass morphology and the pH of the release medium. It was concluded that the studied bioactive glasses have the potential to be used in tissue engineering applications and cancer therapy.


Asunto(s)
Celulosa/análogos & derivados , Eliptocitosis Hereditaria , Hemólisis , Osteosarcoma , Poloxámero , Humanos , Sorafenib , Fenómenos Físicos , Colorantes , Fenómenos Magnéticos
20.
ACS Omega ; 9(22): 23713-23723, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38854531

RESUMEN

Cancer, characterized by uncontrolled cell proliferation, remains a global health challenge. Despite advancements in cancer treatment, drug resistance and adverse effects on normal cells remain challenging. The epidermal growth factor receptor (EGFR), a transmembrane tyrosine kinase protein, is crucial in controlling cell proliferation and is implicated in various cancers. Here, the cytotoxic and apoptotic potential of 21 newly synthesized spiro-pyrrolopyridazine (SPP) derivatives was investigated on breast (MCF-7), lung (H69AR), and prostate (PC-3) cancer cells. XTT assay was used for cytotoxicity assessment. Flow cytometry and western blot (WB) analyses were conducted for apoptosis detection. Additionally, the EGFR inhibitory potential of these derivatives was evaluated via a homogeneous time-resolved fluorescence (HTRF) assay, and WB and molecular docking studies were conducted to analyze the binding affinities of SPP10 with EGFR. SPPs, especially SPP10, exhibit significant cytotoxicity across MCF-7, H69AR, and PC-3 cancer cells with IC50 values of 2.31 ± 0.3, 3.16 ± 0.8, and 4.2 ± 0.2 µM, respectively. Notably, SPP10 demonstrates selective cytotoxicity against cancer cells with a low impact on nontumorigenic cells (IC50 value: 26.8 ± 0.4 µM). Flow cytometric analysis demonstrated the potent induction of apoptotic cell death by SPP10 in all of the tested cancer cells. Western blot analysis revealed the involvement of key apoptotic proteins, with SPP10 notably inhibiting antiapoptotic Bcl-2 while inducing pro-apoptotic Bax and cytochrome c. SPP10 exhibited significant EGFR kinase inhibitory activity, surpassing the efficacy of the reference drug erlotinib. Molecular docking studies support these findings, revealing strong binding affinities of SPP10 with both wild-type and mutated EGFR. The study underscores the significance of heterocyclic compounds, particularly spiro-class heterocyclic molecules, in advancing cancer research. Overall, SPP10 emerges as a promising candidate for further investigations in cancer treatment, combining potent cytotoxicity, apoptotic induction, and targeted EGFR inhibition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA