Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 106(8): 085502, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21405582

RESUMEN

We use molecular dynamics simulations to calculate the phonon energy emitted during rapid crack propagation in brittle crystals. We show that this energy is different for different crack planes and propagation directions and that it is responsible for various phenomena at several length scales: energetically preferred crack systems and crack deflection at the atomic scale, reduced maximum crack speed with volume at the micrometer scale, and the inability of a crack to attain the theoretical limiting speed at the macroscale. We propose to include the contribution of this energy in the Freund equation of motion of a dynamically propagating crack.

2.
Nat Commun ; 4: 2441, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24026345

RESUMEN

Brittle crystals, such as coloured gems, have long been known to cleave with atomically smooth fracture surfaces, despite being impurity laden, suggesting that isolated atomic impurities do not generally cause cracks to deflect. Whether cracks can ever deviate when hitting an atomic defect, and if so how they can go straight in real brittle crystals, which always contain many such defects, is still an open question. Here we carry out multiscale molecular dynamics simulations and high-resolution experiments on boron-doped silicon, revealing that cracks can be deflected by individual boron atoms. The process, however, requires a characteristic minimum time, which must be less than the time spent by the crack front at the impurity site. Deflection therefore occurs at low crack speeds, leading to surface ridges which intensify when the boron-dopage level is increased, whereas fast-moving cracks are dynamically steered away from being deflected, yielding smooth cleavage surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA