Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 22(8): 100592, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37328065

RESUMEN

The need for a clinically accessible method with the ability to match protein activity within heterogeneous tissues is currently unmet by existing technologies. Our proteomics sample preparation platform, named microPOTS (Microdroplet Processing in One pot for Trace Samples), can be used to measure relative protein abundance in micron-scale samples alongside the spatial location of each measurement, thereby tying biologically interesting proteins and pathways to distinct regions. However, given the smaller pixel/voxel number and amount of tissue measured, standard mass spectrometric analysis pipelines have proven inadequate. Here we describe how existing computational approaches can be adapted to focus on the specific biological questions asked in spatial proteomics experiments. We apply this approach to present an unbiased characterization of the human islet microenvironment comprising the entire complex array of cell types involved while maintaining spatial information and the degree of the islet's sphere of influence. We identify specific functional activity unique to the pancreatic islet cells and demonstrate how far their signature can be detected in the adjacent tissue. Our results show that we can distinguish pancreatic islet cells from the neighboring exocrine tissue environment, recapitulate known biological functions of islet cells, and identify a spatial gradient in the expression of RNA processing proteins within the islet microenvironment.


Asunto(s)
Islotes Pancreáticos , Proteoma , Humanos , Proteoma/metabolismo , Islotes Pancreáticos/metabolismo , Espectrometría de Masas
2.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L571-L583, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36881561

RESUMEN

E-cigarette liquids are complex mixtures of chemicals consisting of humectants, such as propylene glycol (PG) and vegetable glycerin (VG), with nicotine or flavorings added. Published literature emphasizes the toxicity of e-cigarette aerosols with flavorings whereas much less attention has been given to the biologic effects of humectants. The purpose of the current study was to provide a comprehensive view of the acute biologic effects of e-cigarette aerosols on rat bronchoalveolar lavage (BAL) using mass spectrometry-based global proteomics. Sprague-Dawley rats were exposed to e-cigarette aerosol for 3 h/day for three consecutive days. Groups included: PG/VG alone, PG/VG + 2.5% nicotine (N), or PG/VG + N + 3.3% vanillin (V). Right lung lobes were lavaged for BAL and supernatants prepared for proteomics. Extracellular BAL S100A9 concentrations and BAL cell staining for citrullinated histone H3 (citH3) were also performed. From global proteomics, ∼2,100 proteins were identified from rat BAL. The greatest change in number of BAL proteins occurred with PG/VG exposures alone compared with controls with biological pathways enriched for acute phase responses, extracellular trap formation, and coagulation. Extracellular BAL S100A9 concentrations and the number of citH3 + BAL cells also increased significantly in PG/VG and PG/VG + 2.5% N. In contrast to PG/VG or PG/VG + N, the addition of vanillin to PG/VG + N increased BAL neutrophilia and downregulated lipid transport proteins. In summary, global proteomics support e-cigarette aerosol exposures to PG/VG alone as having a significant biologic effect on the lung independent of nicotine or flavoring with increased markers of extracellular trap formation.


Asunto(s)
Productos Biológicos , Sistemas Electrónicos de Liberación de Nicotina , Ratas , Animales , Nicotina , Proteoma , Higroscópicos , Ratas Sprague-Dawley , Propilenglicol/farmacología , Glicerol/farmacología , Aerosoles , Histonas , Aromatizantes , Lavado Broncoalveolar
3.
J Am Chem Soc ; 144(22): 9684-9694, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35609235

RESUMEN

The stepwise hydration of the benzonitrile•+ radical cation with one-seven H2O molecules was investigated experimentally and computationally with density functional theory in C6H5CN•+(H2O)n clusters. The stepwise binding energies (ΔHn-1,n°) were determined by equilibrium measurements for C6H5CN•+(H2O) and for •C6H4CNH+(H2O)n with n = 5, 6, and 7 to be 8.8 and 11.3, 11.0, and 10.0 kcal/mol, respectively. The populations of n = 2 and 3 of the C6H5CN•+(H2O)n clusters were observed only in trace abundance due to fast depletion processes leading to the formation of the hydrated distonic cations •C6H4CNH+(H2O)n with n = 4-7. The observed transition occurs between conventional radical cations hydrated on the ring in C6H5CN•+(H2O)n clusters with n = 1-3 and the protonated radical •C6H4CNH+ (distonic ion) formed by a proton transfer to the CN nitrogen and ionic hydrogen bonding to water molecules in •C6H4CNH+(H2O)n clusters with n = 4-7. The measured binding energy of the hydrated ion C6H5CN•+(H2O) (8.8 kcal/mol) is similar to that of the hydrated benzene radical cation (8.5 kcal/mol) that involves a relatively weak CHδ+···O hydrogen bonding interaction. Also, the measured binding energies of the •C6H4CNH+(H2O)n clusters with n = 5-7 are similar to those of the protonated benzonitrile (methanol)n clusters [C6H5CNH+(CH3OH)n, n = 5-7] that involve CNH+···O ionic hydrogen bonds. The proton shift from the para-•C ring carbon to the nitrogen of the benzonitrile radical cation is endothermic without solvent but thermoneutral for n = 1 and exothermic for n = 2-4 in C6H5CN•+(H2O)n clusters to form the distonic •C6H4CN···H+(OH2)n clusters. The distonic clusters •C6H4CN···H+(OH2)n constitute a new class of structures in radical ion/solvent clusters.


Asunto(s)
Protones , Agua , Cationes/química , Radicales Libres/química , Hidrógeno , Nitrilos , Nitrógeno , Solventes , Agua/química
4.
J Chem Inf Model ; 62(6): 1538-1549, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35285230

RESUMEN

The human ATP- and UTP-activated P2Y2 receptor (P2Y2R) is a Gq protein-coupled receptor involved in several pathophysiological conditions including acute and chronic inflammation, cancer, and pain. Despite its potential as a novel drug target, only few P2Y2R antagonists have been developed so far, all of which suffer from severe drawbacks. These include (i) high polarity due to one or several negative charges resulting in low oral bioavailability, (ii) metabolic instability and generally poor pharmacokinetic properties, and/or (iii) lack of selectivity, which limits their utility for in vitro and in vivo studies aimed at target validation. In search of new druglike scaffolds for P2Y2R antagonists, we employed a structure-based virtual high-throughput screening approach utilizing the complex of a P2Y2R homology model with one of the most potent and selective orthosteric antagonists described so far, AR-C118925 (10). After virtual screening of 3.2 million molecules, 58 compounds were purchased and pharmacologically evaluated. Several novel antagonist scaffolds were discovered, and their binding modes at the human P2Y2R were analyzed by molecular docking studies. The investigated antagonists likely share a similar binding mode with 10 which includes accommodation of bulky, lipophilic groups in the putative orthosteric binding site of the P2Y2R. The discovered scaffolds and the elucidated structure-activity relationships provide a basis for the development of future drug candidates for the P2Y2R which have great potential as novel drugs.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Antagonistas del Receptor Purinérgico P2Y , Transducción de Señal , Sitios de Unión , Humanos , Simulación del Acoplamiento Molecular , Antagonistas del Receptor Purinérgico P2Y/química , Receptores Acoplados a Proteínas G
5.
Chembiochem ; 22(4): 717-723, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33049124

RESUMEN

The microbial catabolism of chitin, an abundant and ubiquitous environmental organic polymer, is a fundamental cog in terrestrial and aquatic carbon and nitrogen cycles. Despite the importance of this critical bio-geochemical function, there is a limited understanding of the synergy between the various hydrolytic and accessory enzymes involved in chitin catabolism. To address this deficit, we synthesized activity-based probes (ABPs) designed to target active chitinolytic enzymes by modifying the chitin subunits N-acetyl glucosamine and chitotriose. The ABPs were used to determine the active complement of chitinolytic enzymes produced over time by the soil bacterium Cellvibrio japonicus treated with various C substrates. We demonstrate the utility of these ABPs in determining the synergy between various enzymes involved in chitin catabolism. The strategy can be used to gain molecular-level insights that can be used to better understand microbial roles in soil bio-geochemical cycling in the face of a changing climate.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cellvibrio/metabolismo , Quitina/metabolismo , Quitinasas/metabolismo , Proteoma/análisis , Hidrólisis , Proteoma/metabolismo
6.
Malar J ; 20(1): 113, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632233

RESUMEN

BACKGROUND: Evidence of Plasmodium resistance to some of the current anti-malarial agents makes it imperative to search for newer and effective drugs to combat malaria. Therefore, this study evaluated whether the co-administrations of xylopic acid-amodiaquine and xylopic acid-artesunate combinations will produce a synergistic anti-malarial effect. METHODS: Antiplasmodial effect of xylopic acid (XA: 3, 10, 30, 100, 150 mg kg-1), artesunate (ART: 1, 2, 4, 8, 16 mg kg-1), and amodiaquine (AQ: 1.25, 2.5, 5, 10, 20 mg kg-1) were evaluated in Plasmodium berghei (strain ANKA)-infected mice to determine respective ED50s. Artemether/lumefantrine was used as the positive control. XA/ART and XA/AQ were subsequently administered in a fixed-dose combination of their ED50s (1:1) and the combination fractions of their ED50s (1/2, 1/4, 1/8, 1/16, and 1/32) to determine the experimental ED50s (Zexp). An isobologram was constructed to determine the nature of the interaction between XA/ART, and XA/AQ combinations by comparing Zexp with the theoretical ED50 (Zadd). Bodyweight and 30-day survival post-treatment were additionally recorded. RESULTS: ED50s for XA, ART, and AQ were 9.0 ± 3.2, 1.61 ± 0.6, and 3.1 ± 0.8 mg kg-1, respectively. The Zadd, Zexp, and interaction index for XA/ART co-administration was 5.3 ± 2.61, 1.98 ± 0.25, and 0.37, respectively while that of XA/AQ were 6.05 ± 2.0, 1.69 ± 0.42, and 0.28, respectively. The Zexp for both combination therapies lay significantly (p < 0.001) below the additive isoboles showing XA acts synergistically with both ART and AQ in clearing the parasites. High doses of XA/ART combination significantly (p < 0.05) increased the survival days of infected mice with a mean hazard ratio of 0.40 while all the XA/AQ combination doses showed a significant (p < 0.05) increase in the survival days of infected mice with a mean hazard ratio of 0.27 similar to AL. Both XA/ART and XA/AQ combined treatments significantly (p < 0.05) reduced weight loss. CONCLUSION: Xylopic acid co-administration with either artesunate or amodiaquine produces a synergistic anti-plasmodial effect in mice infected with P. berghei.


Asunto(s)
Amodiaquina/uso terapéutico , Antimaláricos/uso terapéutico , Artesunato/uso terapéutico , Diterpenos de Tipo Kaurano/uso terapéutico , Malaria/tratamiento farmacológico , Animales , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Femenino , Ratones , Ratones Endogámicos ICR , Plasmodium berghei/efectos de los fármacos
7.
Anal Chem ; 92(22): 14976-14982, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33136380

RESUMEN

The collision cross section (CCS) is an important property that aids in the structural characterization of molecules. Here, we investigated the CCS calibration accuracy with traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM) using three sets of calibrants. A series of singly negatively charged phospholipids and bile acids were calibrated in nitrogen buffer gas using two different TW waveform profiles (square and sine) and amplitudes (20, 25, and 30 V0-p). The calibration errors for the three calibrant sets (Agilent tuning mixture, polyalanine, and one assembled in-house) showed negligible differences using a sine-shaped TW waveform. Calibration errors were all within 1-2% of the drift tube ion mobility spectrometry (DTIMS) measurements, with lower errors for sine waveforms, presumably due to the lower average and maximum fields experienced by ions. Finally, ultrahigh-resolution multipass (long path length) SLIM TWIMS separations demonstrated improved CCS calibration for phospholipid and bile acid isomers.


Asunto(s)
Espectrometría de Movilidad Iónica/métodos , Ácidos y Sales Biliares/química , Calibración , Electrodos , Espectrometría de Movilidad Iónica/instrumentación , Isomerismo , Espectrometría de Masas , Péptidos/química , Fosfolípidos/química
8.
Anal Chem ; 92(7): 5004-5012, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32142606

RESUMEN

Antibody-drug conjugates (ADCs) have recently gained traction in the biomedical community due to their promise for human therapeutics and an alternative to chemotherapy for cancer. Crucial metrics for ADC efficacy, safety, and selectivity are their drug-antibody ratios (DARs). However, DAR characterization (i.e., determining the average number of conjugated drugs on the antibody) through analytical methods remains challenging due to the heterogeneity of drug conjugation as well as the numerous post-translational modifications possible in the monoclonal antibody. Herein, we report on the use of high-resolution ion mobility spectrometry separations in structures for lossless ion manipulations coupled to mass spectrometry (SLIM IMS-MS) for the rapid and simultaneous characterization of the drug load profile (i.e., stoichiometric distribution of the number of conjugated drugs present on the mAb), determination of the weighted average DAR in both the heavy and light chains of a model antibody-drug conjugate, and calculation of the overall DAR of the ADC. After chemical reduction of the ADC and a subsequent 31.5 m SLIM IMS separation, the various drug-bound antibody species could be well resolved for both chains. We also show significantly higher resolution separations were possible for these large ions with SLIM IMS as compared to ones performed on a commercially available (1 m) drift tube IMS-MS platform. We expect high-resolution SLIM IMS separations will augment the existing toolbox for ADC characterization, particularly to enable the rapid optimization of DAR for a given ADC and thus better understand its potential toxicity and potency.


Asunto(s)
Anticuerpos Monoclonales/química , Inmunoconjugados/química , Preparaciones Farmacéuticas/química , Humanos , Espectrometría de Masas , Estructura Molecular
9.
Anal Chem ; 92(22): 14930-14938, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33105077

RESUMEN

Ion packets introduced from gates, ion funnel traps, and other conventional ion injection mechanisms produce ion pulse widths typically around a few microseconds or less for ion mobility spectrometry (IMS)-based separations on the order of 100 milliseconds. When such ion injection techniques are coupled with ultralong path length traveling wave (TW)-based IMS separations (i.e., on the order of seconds) using structures for lossless ion manipulations (SLIMs), typically very low ion utilization efficiency is achieved for continuous ion sources [e.g., electrospray ionization (ESI)]. Even with the ability to trap and accumulate much larger populations of ions than being conventionally feasible over longer time periods in SLIM devices, the subsequent long separations lead to overall low ion utilization. Here, we report the use of a highly flexible SLIM arrangement, enabling concurrent ion accumulation and separation and achieving near-complete ion utilization with ESI. We characterize the ion accumulation process in SLIM, demonstrate >98% ion utilization, and show both increased signal intensities and measurement throughput. This approach is envisioned to have broad utility to applications, for example, involving the fast detection of trace chemical species.


Asunto(s)
Espectrometría de Movilidad Iónica/métodos , Relación Señal-Ruido , Espectrometría de Masa por Ionización de Electrospray
10.
Anal Chem ; 91(22): 14712-14718, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31621288

RESUMEN

We describe the development of a dual-polarity traveling-wave (TW) structures for lossless ion manipulations (SLIM) ion mobility spectrometry (IMS) device capable of switching both positive and negative ions that are traveling simultaneously along the same path to different regions of the SLIM. Through simulations, the routing efficiency of the SLIM TW switch was compared to a SLIM direct-current-based (DC) switch developed previously for IMS-MS. We also report on the initial experimental evaluation of a dual-polarity SLIM platform, which uses the TW-based ion switch to achieve higher resolution multipass serpentine ultralong path with extended routing (SUPER) IMS separations. Overall, these results show that the dual-polarity TW switch is not only as effective as DC switching in terms of routing efficiency but also is agnostic to the polarity of the ions being routed.


Asunto(s)
Espectrometría de Movilidad Iónica/métodos , Iones/química , Electrodos , Espectrometría de Movilidad Iónica/instrumentación
11.
Anal Chem ; 91(7): 4374-4380, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30816701

RESUMEN

Accumulation of ß-amyloid (Aß) is one of the hallmarks of Alzheimer's disease. The deposition of ß-amyloid plaques is likely to start years in advance of manifestation of clinical symptoms, although the exact timing is unknown. Over the years, Aß peptides undergo both post-translational modification and stereoisomerization. Analysis of the resulting stereoisomers is particularly challenging because of their identical elemental composition and similar physicochemical properties. Herein, we have utilized our recently developed structures for lossless ion manipulations ion mobility-mass spectrometry platform (SLIM IM-MS), in conjunction with serpentine ultralong path with extended routing (SUPER), to baseline resolve four distinct sets of Aß17-28 tryptic peptide epimers on a rapid (∼1 s) time scale. We discovered that sodium adduct ions, [M + H + Na]2+, allowed baseline SLIM SUPER IM resolution for all Aß epimer sets assessed, while such baseline separations were unachievable for their [M + 2H]2+ doubly protonated ions.


Asunto(s)
Péptidos beta-Amiloides/análisis , Ácido Aspártico/química , Fragmentos de Péptidos/análisis , Péptidos beta-Amiloides/química , Espectrometría de Masas/métodos , Fragmentos de Péptidos/química , Estereoisomerismo
12.
Anal Chem ; 91(18): 11952-11962, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31450886

RESUMEN

We report on separations of ion isotopologues and isotopomers using ultrahigh-resolution traveling wave-based Structures for Lossless Ion Manipulations with serpentine ultralong path and extended routing ion mobility spectrometry coupled to mass spectrometry (SLIM SUPER IMS-MS). Mobility separations of ions from the naturally occurring ion isotopic envelopes (e.g., [M], [M+1], [M+2], ... ions) showed the first and second isotopic peaks (i.e., [M+1] and [M+2]) for various tetraalkylammonium ions could be resolved from their respective monoisotopic ion peak ([M]) after SLIM SUPER IMS with resolving powers of ∼400-600. Similar separations were obtained for other compounds (e.g., tetrapeptide ions). Greater separation was obtained using argon versus helium drift gas, as expected from the greater reduced mass contribution to ion mobility described by the Mason-Schamp relationship. To more directly explore the role of isotopic substitutions, we studied a mixture of specific isotopically substituted (15N, 13C, and 2H) protonated arginine isotopologues. While the separations in nitrogen were primarily due to their reduced mass differences, similar to the naturally occurring isotopologues, their separations in helium, where higher resolving powers could also be achieved, revealed distinct additional relative mobility shifts. These shifts appeared correlated, after correction for the reduced mass contribution, with changes in the ion center of mass due to the different locations of heavy atom substitutions. The origin of these apparent mass distribution-induced mobility shifts was then further explored using a mixture of Iodoacetyl Tandem Mass Tag (iodoTMT) isotopomers (i.e., each having the same exact mass, but with different isotopic substitution sites). Again, the observed mobility shifts appeared correlated with changes in the ion center of mass leading to multiple monoisotopic mobilities being observed for some isotopomers (up to a ∼0.04% difference in mobility). These mobility shifts thus appear to reflect details of the ion structure, derived from the changes due to ion rotation impacting collision frequency or momentum transfer, and highlight the potential for new approaches for ion structural characterization.


Asunto(s)
Deuterio/química , Isótopos de Carbono/química , Espectrometría de Movilidad Iónica , Iones/química , Iones/aislamiento & purificación , Espectrometría de Masas , Isótopos de Nitrógeno/química
13.
Org Biomol Chem ; 17(46): 9913-9923, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31720670

RESUMEN

Nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) inhibitors have been suggested as a potential treatment for calcium pyrophosphate dihydrate (CPPD) deposition disease. Here, we targeted the development of improved NPP1 inhibitors based on acyclic mimics of Pα,α-phosphorodithioate-substituted adenine nucleotides, 7-10. The latter were obtained in a facile two-step synthesis from adenine-(methoxy)ethanol. Among analogs 7-10, adenine-(methoxy)ethoxy-Pα,α-dithio-triphosphate, 8, was the most potent NPP1 inhibitor both with purified enzyme (IC50 0.645 µM) and in osteoarthritic human chondrocytes (IC50 0.033 µM). Furthermore, it efficaciously (10-fold vs. control) inhibited ATP-induced CPPD in human articular chondrocytes. Importantly, 8 was a highly selective NPP1 inhibitor which showed only minor inhibition of NPP3, CD39 and CD73, and did not inhibit TNAP (tissue nonspecific alkaline phosphatase) activity in human chondrocytes. Furthermore, 8 did not activate P2Y1,2,6 receptors. Analog 8 was not toxic to cultured chondrocytes at 100 µM. Therefore, 8 may be suitable for further development as a drug candidate for the treatment of CPPD arthritis and other NPP1-related diseases.


Asunto(s)
Adenina/farmacología , Pirofosfato de Calcio/antagonistas & inhibidores , Condrocitos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Osteoartritis de la Rodilla/tratamiento farmacológico , Polifosfatos/farmacología , Pirofosfatasas/antagonistas & inhibidores , Compuestos de Sulfhidrilo/farmacología , Adenina/síntesis química , Adenina/química , Pirofosfato de Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Condrocitos/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología , Hidrolasas Diéster Fosfóricas/metabolismo , Polifosfatos/química , Pirofosfatasas/metabolismo , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/química
14.
J Nat Prod ; 82(3): 440-448, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30295480

RESUMEN

A series of Wrightia hanleyi extracts was screened for activity against Mycobacterium tuberculosis H37Rv. One active fraction contained a compound that initially appeared to be either the isoflavonoid wrightiadione or the alkaloid tryptanthrin, both of which have been previously reported in other Wrightia species. Characterization by NMR and MS, as well as evaluation of the literature describing these compounds, led to the conclusion that wrightiadione (1) was misidentified in the first report of its isolation from W. tomentosa in 1992 and again in 2015 when reported in W. pubescens and W. religiosa. Instead, the molecule described in these reports and in the present work is almost certainly the isobaric (same nominal mass) and isosteric (same number of atoms, valency, and shape) tryptanthrin (2), a well-known quinazolinone alkaloid found in a variety of plants including Wrightia species. Tryptanthrin (2) is also accessible synthetically via several routes and has been thoroughly characterized. Wrightiadione (1) has been synthesized and characterized and may have useful biological activity; however, this compound can no longer be said to be known to exist in Nature. To our knowledge, this misidentification of wrightiadione (1) has heretofore been unrecognized.


Asunto(s)
Antituberculosos/aislamiento & purificación , Apocynaceae/química , Quinazolinas/aislamiento & purificación , Antituberculosos/química , Antituberculosos/farmacología , Espectroscopía de Resonancia Magnética con Carbono-13 , Isoflavonas , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Espectroscopía de Protones por Resonancia Magnética , Quinazolinas/química , Quinazolinas/farmacología
15.
Electrophoresis ; 39(24): 3148-3155, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30168603

RESUMEN

Enantiomeric molecular evaluations remain an enormous challenge for current analytical techniques. To date, derivatization strategies and long separation times are generally required in these studies, and the development and implementation of new approaches are needed to increase speed and distinguish currently unresolvable compounds. Herein, we describe a method using chiral cyclodextrin adducts and structures for lossless ion manipulations (SLIM) and serpentine ultralong path with extended routing (SUPER) ion mobility (IM) to achieve rapid, high resolution separations of d and l enantiomeric amino acids. In the analyses, a chiral cyclodextrin is added to each sample. Two cyclodextrins were found to complex each amino acid molecule (i.e. potentially sandwiching the amino acid in their cavities) and forming host-guest noncovalent complexes that were distinct for each d and l amino acid pair studied and thus separable with IM in SLIM devices. The SLIM was also used to accumulate much larger ion populations than previously feasible for evaluation and therefore allow enantiomeric measurements of higher sensitivity, with gains in resolution from our ultralong path separation capabilities, than previously reported by any other IM-based approach.


Asunto(s)
Aminoácidos/análisis , Aminoácidos/química , Ciclodextrinas/química , Aminoácidos/aislamiento & purificación , Iones , Espectrometría de Masas/métodos , Modelos Moleculares , Estereoisomerismo
16.
J Am Chem Soc ; 139(34): 11923-11932, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28759221

RESUMEN

Radical organic ions can be stabilized by complexation with neutral organics via interactions that can resemble chemical bonds, but with much diminished bond energies. Those interactions are a key factor in cluster growth and polymerization reactions in ionizing environments such as regions of the interstellar medium and solar nebulae. Such radical cation complexes between naphthalene (Naph) and pyridine (Pyr) are characterized using mass-selected ion mobility experiments. The measured enthalpy of binding of the Naph+•(Pyr) heterodimer (20.9 kcal/mol) exceeds that of the Naph+•(Naph) homodimer (17.8 kcal/mol). The addition of 1-3 more pyridine molecules to the Naph+•(Pyr) heterodimer gives 10-11 kcal/mol increments in binding enthalpy. A rich array of Naph+•(Pyr) isomers are characterized by electronic structure calculations. The calculated Boltzmann distribution at 400 K yields an enthalpy of binding in reasonable agreement with experiment. The global minimum is a distonic cation formed by Pyr attack on Naph+• at the α-carbon, changing its hybridization from sp2 to distorted sp3. The measured collision cross section in helium for the Naph+•(Pyr) heterodimer of 84.9 ± 2.5 Å2 at 302 K agrees well with calculated angle-averaged cross sections (83.9-85.1 Å2 at 302 K) of the lowest energy distonic structures. A remarkable 16 kcal/mol increase in the binding energy between Naph+•(Pyr) and Bz+•(Pyr) (Bz is benzene) is understood by energy decomposition analysis. A similar increase in binding from Naph+•(NH3) to Naph+•(Pyr) (as well as between Bz+•(NH3) and Bz+•(Pyr)) is likewise rationalized.

17.
Anal Chem ; 89(12): 6432-6439, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28497957

RESUMEN

We report on the implementation of a traveling wave (TW) based compression ratio ion mobility programming (CRIMP) approach within structures for lossless ion manipulations (SLIM) that enables both greatly enlarged trapped ion charge capacities and also efficient ion population compression for use in ion mobility (IM) separations. Ion accumulation is conducted in a SLIM serpentine ultralong path with extended routing (SUPER) region after which CRIMP compression allows the large ion populations to be "squeezed". The SLIM SUPER IM module has two regions, one operating with conventional traveling waves (i.e., traveling trap; TT region) and the second having an intermittently pausing or "stuttering" TW (i.e., stuttering trap; ST region). When a stationary voltage profile was used in the ST region, ions are blocked at the TT-ST interface and accumulated in the TT region and then can be released by resuming a conventional TW in the ST region. The population can also be compressed using CRIMP by the repetitive merging of ions distributed over multiple TW bins in the TT region into a single TW bin in the ST region. Ion accumulation followed by CRIMP compression provides the basis for the use of larger ion populations for IM separations. We show that over 109 ions can be accumulated with high efficiency in the present device and that the extent of subsequent compression is only limited by the space charge capacity of the trapping region. Approximately 5 × 109 charges introduced from an electrospray ionization source were trapped for a 40 s accumulation period, more than 2 orders of magnitude greater than the previously reported charge capacity of an ion funnel trap. Importantly, we show that extended ion accumulation in conjunction with CRIMP compression and multiple passes through the serpentine path provides the basis for a highly desirable combination of ultrahigh sensitivity and SLIM SUPER high-resolution IM separations.


Asunto(s)
Péptidos/análisis , Espectrometría de Movilidad Iónica/instrumentación , Iones/química , Espectrometría de Masas/instrumentación
18.
Purinergic Signal ; 13(1): 89-103, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27766552

RESUMEN

The Gq protein-coupled, ATP- and UTP-activated P2Y2 receptor is a potential drug target for a range of different disorders, including tumor metastasis, inflammation, atherosclerosis, kidney disorders, and osteoporosis, but pharmacological studies are impeded by the limited availability of suitable antagonists. One of the most potent and selective antagonists is the thiouracil derivative AR-C118925. However, this compound was until recently not commercially available and little is known about its properties. We therefore developed an improved procedure for the synthesis of AR-C118925 and two derivatives to allow up-scaling and assessed their potency in calcium mobilization assays on the human and rat P2Y2 receptors recombinantly expressed in 1321N1 astrocytoma cells. The compound was further evaluated for inhibition of P2Y2 receptor-induced ß-arrestin translocation. AR-C118925 behaved as a competitive antagonist with pA 2 values of 37.2 nM (calcium assay) and 51.3 nM (ß-arrestin assay). Selectivity was assessed vs. related receptors including P2X, P2Y, and adenosine receptor subtypes, as well as ectonucleotidases. AR-C118925 showed at least 50-fold selectivity against the other investigated targets, except for the P2X1 and P2X3 receptors which were blocked by AR-C118925 at concentrations of about 1 µM. AR-C118925 is soluble in buffer at pH 7.4 (124 µM) and was found to be metabolically highly stable in human and mouse liver microsomes. In Caco2 cell experiments, the compound displayed moderate permeability indicating that it may show limited peroral bioavailability. AR-C118925 appears to be a useful pharmacological tool for in vitro and in vivo studies.


Asunto(s)
Dibenzocicloheptenos/síntesis química , Dibenzocicloheptenos/farmacología , Antagonistas del Receptor Purinérgico P2Y/síntesis química , Antagonistas del Receptor Purinérgico P2Y/farmacología , Pirimidinonas/síntesis química , Pirimidinonas/farmacología , Animales , Línea Celular Tumoral , Humanos , Transporte de Proteínas , Ratas , Receptores Purinérgicos P2Y2/metabolismo , beta-Arrestinas/metabolismo
19.
Phys Chem Chem Phys ; 19(28): 18603-18611, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28691724

RESUMEN

Halogen bonding (XB) non-covalent interactions can be observed in compounds containing chlorine, bromine, or iodine which can form directed close contacts of the type R1-XY-R2, where the halogen X acts as a Lewis acid and Y can be any electron donor moiety including electron lone pairs on hetero atoms such as O and N, or π electrons in olefin double bonds and aromatic conjugated systems. In this work, we present the first evidence for the formation of ionic halogen bonds (IXBs) in the hydration of bromobenzene and iodobenzene radical cations in the gas phase. We present a combined thermochemical investigation using the mass-selected ion mobility (MSIM) technique and density functional theory (DFT) calculations of the stepwise hydration of the fluoro, chloro, bromo, and iodobenzene radical cations. The binding energy associated with the formation of an IXB in the hydration of the iodobenzene cation (11.2 kcal mol-1) is about 20% higher than the typical unconventional ionic hydrogen bond (IHB) of the CHδ+OH2 interaction. The formation of an IXB in the hydration of the iodobenzene cation involves a significant entropy loss (29 cal mol-1 K-1) resulting from the formation of a more ordered structure and a highly directional interaction between the oxygen lone pair of electrons of water and the electropositive region around the iodine atom of the iodobenzene cation. In comparison, the hydration of the fluorobenzene and chlorobenzene cations where IHBs are formed, -ΔS° = 18-21 cal mol-1 K-1 consistent with the formation of less ordered structures and loose interactions. The electrostatic potentials on the lowest energy structures of the hydrated halogenated benzene radical cations show clearly that the formation of an IXB is driven by a positively charged σ-hole on the external side of the halogen atom X along the C-X bond axis. The size of the σ-hole increases significantly in bromobenzene and iodobenzene radical cations which results in strong interaction potentials with the electron lone pairs of the oxygen atom of the water molecules and thus IXBs provide the most stable hydrated structures of the bromobenzene and iodobenzene radical cations. The results clearly distinguish the hydration behaviors resulting from the ionic hydrogen and halogen bonding interactions of fluorobenzene and iodobenzene cations, respectively, and establish the different bonding and structural features of the two interactions.

20.
Phys Chem Chem Phys ; 19(9): 6422-6432, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28218317

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic nitrogen heterocyclics (PANHs) are present in ionizing environments, including interstellar clouds and solar nebulae, where their ions can interact with neutral PAH and PANH molecules leading to the formation of a variety of complex organics including large N-containing ions. Herein, we report on the formation of a covalently-bonded (benzene·pyrimidine) radical cation dimer by the gas phase reaction of pyrimidine with the benzene radical cation at room temperature using the mass-selected ion mobility technique. No ligand exchange reactions with benzene and pyrimidine are observed indicating that the binding energy of the (benzene·pyrimidine)˙+ adduct is significantly higher than both the benzene dimer cation and the proton-bound pyrimidine dimer. The (benzene·pyrimidine)˙+ adduct shows thermal stability up to 541 K. Thermal dissociation of the (C6D6·C4H4N2)˙+ adduct at temperatures higher than 500 K produces C4H4N2D+ (m/z 82) suggesting the transfer of a D atom from the C6D6 moiety to the C4H4N2 moiety before the dissociation of the adduct. Mass-selected ion mobility of the (benzene·pyrimidine)˙+ dimer reveals the presence of two families of isomers formed by electron impact ionization of the neutral (benzene·pyrimidine) dimer. The slower mobility peak corresponds to a non-covalent family of isomers with larger collision cross sections (76.0 ± 1.8 Å2) and the faster peak is consistent with a family of covalent isomers with more compact structures and smaller collision cross sections (67.7 ± 2.2 Å2). The mobility measurements at 509 K show only one peak corresponding to the family of stable covalently bonded isomers characterized by smaller collision cross sections (66.9 ± 1.9 Å2 at 509 K). DFT calculations at the M06-2X/6-311++G** level show that the most stable (benzene·pyrimidine)˙+ isomer forms a covalent C-N bond with a binding energy of 49.7 kcal mol-1 and a calculated collision cross section of 69.2 Å2, in excellent agreement with the value obtained from the faster mobility peak of the (benzene·pyrimidine)˙+ dimer. Formation of a C-N covalent bond displaces a hydrogen atom from a C-H bond of the benzene cation which is transferred to the second pyrimidine nitrogen atom, thus preserving the pyrimidine π system and yielding the most stable (benzene·pyrimidine)˙+ isomer. The calculations also show less stable non-covalent electrostatically bonded perpendicular isomers of the (benzene·pyrimidine)˙+ dimer with a binding energy of 19 kcal mol-1 and a calculated collision cross section of 74.0-75.0 Å2 in excellent agreement with the value obtained from the slower mobility peak of the (benzene·pyrimidine)˙+ dimer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA