Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
New Phytol ; 241(5): 1985-1997, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38189091

RESUMEN

Adaptations of plants to phosphorus (P) deficiency include reduced investment of leaf P in storage (orthophosphates in vacuoles), nucleic acids and membrane lipids. Yet, it is unclear how these adaptations are associated with plant ecological strategies. Five leaf P fractions (orthophosphate P, Pi ; metabolite P, PM ; nucleic acid P, PN ; lipid P, PL ; and residual P, PR ) were analysed alongside leaf economic traits among 35 Australian woody species from three habitats: one a high-P basalt-derived soil and two low-P sandstone-derived soils, one undisturbed and one disturbed by human activities with artificial P inputs. Species at the undisturbed low-P site generally exhibited lower concentrations of total leaf P ([Ptotal ]), primarily associated with lower concentrations of Pi , and PN . The relative allocation of P to each fraction varied little among sites, except that higher PL per [Ptotal ] (rPL ) was recorded at the undisturbed low-P site than at the high-P site. This higher rPL , reflecting relative allocation to membranes, was primarily associated with lower concentrations of leaf nitrogen at the undisturbed low-P site than at the high-P site. Associations between leaf P fractions and leaf nitrogen may provide a basis for understanding the variation in plant ecological strategies dependent on soil P availability.


Asunto(s)
Fósforo , Plantas , Humanos , Australia , Fósforo/metabolismo , Plantas/metabolismo , Fosfatos/metabolismo , Nitrógeno/metabolismo , Suelo , Hojas de la Planta/metabolismo
2.
Ann Bot ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980751

RESUMEN

BACKGROUND AND AIMS: Five species of cotton (Gossypium) were exposed to 38°C days during early vegetative development. Commercial cotton (Gossypium hirsutum) was contrasted with four wild cotton species (G. australe, G. bickii, G. robinsonii and G. sturtianum) that are endemic to central and northern Australia. METHODS: Plants were grown at daytime maxima of 30°C or 38°C for 25 d, commencing at the four-leaf stage. Leaf areas and shoot biomass were used to calculate relative rates of growth and specific leaf areas. Leaf gas exchange measurements revealed assimilation and transpiration rates, as well as electron transport rates (ETR) and carboxylation efficiency (CE) in steady-state conditions. Finally, leaf morphological traits (mean leaf area and leaf shape were quantified), along with leaf surface decorations, imaged using scanning electron microscopy. KEY RESULTS: Shoot morphology was differentially affected by heat, with three of the four wild species growing faster at 38°C than at 30°C, whereas early growth in G. hirsutum was severely inhibited by heat. Areas of individual leaves and leaf numbers both contributed to these contrasting growth responses, with fewer, smaller leaves at 38°C in G. hirsutum. CO2 assimilation and transpiration rates of G. hirsutum were also dramatically reduced by heat. Cultivated cotton failed to achieve evaporative cooling, contrasting with the transpiration-driven cooling in the wild species. Heat substantially reduced ETR and CE in G. hirsutum, with much smaller effects in the wild species. We speculate that leaf shape, as assessed by invaginations of leaf margins, and leaf size contributed to heat dispersal differentially among the five species. Similarly, reflectance of light radiation was also highly distinctive for each species. CONCLUSIONS: These four wild Australian relatives of cotton have adapted to hot days that are inhibitory to commercial cotton, deploying a range of physiological and structural adaptations to achieve accelerated growth at 38°C.

3.
Plant J ; 109(4): 965-979, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34837283

RESUMEN

Reproductive performance in plants is impaired as maximum temperatures consistently approach 40°C. However, the timing of heatwaves critically affects their impact. We studied the molecular responses during pollen maturation in cotton to investigate the vulnerability to high temperature. Tetrads (TEs), uninucleate and binucleate microspores, and mature pollen were subjected to SWATH-MS and RNA-seq analyses after exposure to 38/28°C (day/night) for 5 days. The results indicated that molecular signatures were downregulated progressively in response to heat during pollen development. This was even more evident in leaves, where three-quarters of differentially changed proteins decreased in abundance during heat. Functional analysis showed that translation of genes increased in TEs after exposure to heat; however, the reverse pattern was observed in mature pollen and leaves. For example, proteins involved in transport were highly abundant in TEs whereas in later stages of pollen formation and leaves, heat suppressed synthesis of proteins involved in cell-to-cell communication. Moreover, a large number of heat shock proteins were identified in heat-affected TEs, but these proteins were less abundant in mature pollen and leaves. We speculate that the sensitivity of TE cells to heat is related to high rates of translation targeted to pathways that might not be essential for thermotolerance. Molecular signatures during stages of pollen development after heatwaves could provide markers for future genetic improvement.


Asunto(s)
Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Polen/genética , Termotolerancia/genética , Gossypium/metabolismo , Proteínas de Choque Térmico/metabolismo , Calor , Hojas de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/crecimiento & desarrollo , Polen/metabolismo , Proteómica , Termotolerancia/fisiología , Transcriptoma
4.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298579

RESUMEN

Multiple abiotic stress is known as a type of environmental unfavourable condition maximizing the yield and growth gap of crops compared with the optimal condition in both natural and cultivated environments. Rice is the world's most important staple food, and its production is limited the most by environmental unfavourable conditions. In this study, we investigated the pre-treatment of abscisic acid (ABA) on the tolerance of the IAC1131 rice genotype to multiple abiotic stress after a 4-day exposure to combined drought, salt and extreme temperature treatments. A total of 3285 proteins were identified and quantified across the four treatment groups, consisting of control and stressed plants with and without pre-treatment with ABA, with 1633 of those proteins found to be differentially abundant between groups. Compared with the control condition, pre-treatment with the ABA hormone significantly mitigated the leaf damage against combined abiotic stress at the proteome level. Furthermore, the application of exogenous ABA did not affect the proteome profile of the control plants remarkably, while the results were different in stress-exposed plants by a greater number of proteins changed in abundance, especially those which were increased. Taken together, these results suggest that exogenous ABA has a potential priming effect for enhancing the rice seedlings' tolerance against combined abiotic stress, mainly by affecting stress-responsive mechanisms dependent on ABA signalling pathways in plants.


Asunto(s)
Ácido Abscísico , Oryza , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Oryza/genética , Proteoma/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Sequías
5.
Proteomics ; 22(21): e2200100, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35920597

RESUMEN

Drought is responsible for major losses in rice production. Root tips contain meristematic and elongation zones that play major roles in determination of root traits and adaptive strategies to drought. In this study we analysed two contrasting genotypes of rice: IR64, a lowland, drought-susceptible, and shallow-rooting genotype; and Azucena, an upland, drought-tolerant, and deep-rooting genotype. Samples were collected of root tips of plants grown under control and water deficit stress conditions. Quantitative proteomics analysis resulted in the identification of 7294 proteins from the root tips of IR64 and 6307 proteins from Azucena. Data are available via ProteomeXchange with identifier PXD033343. Using a Partial Least Square Discriminant Analysis on 4170 differentially abundant proteins, 1138 statistically significant proteins across genotypes and conditions were detected. Twenty two enriched biological processes showing contrasting patterns between two genotypes in response to stress were detected through gene ontology enrichment analysis. This included identification of novel proteins involved in root elongation with specific expression patterns in Azucena, including four Expansins and seven Class III Peroxidases. We also detected an antioxidant network and a metallo-sulfur cluster assembly machinery in Azucena, with roles in reactive oxygen species and iron homeostasis, and positive effects on root cell cycle, growth and elongation.


Asunto(s)
Oryza , Oryza/metabolismo , Sequías , Proteómica , Meristema/genética , Regulación de la Expresión Génica de las Plantas , Genotipo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
6.
Plant Mol Biol ; 110(4-5): 347-363, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34997897

RESUMEN

KEY MESSAGE: A wild relative of rice from the Australian savannah was compared with cultivated rice, revealing thermotolerance in growth and photosynthetic processes and a more robust carbon economy in extreme heat. Above ~ 32 °C, impaired photosynthesis compromises the productivity of rice. We compared leaf tissues from heat-tolerant wild rice (Oryza australiensis) with temperate-adapted O. sativa after sustained exposure to heat, as well as diurnal heat shock. Leaf elongation and shoot biomass in O. australiensis were unimpaired at 45 °C, and soluble sugar concentrations trebled during 10 h of a 45 °C shock treatment. By contrast, 45 °C slowed growth strongly in O. sativa. Chloroplastic CO2 concentrations eliminated CO2 supply to chloroplasts as the basis of differential heat tolerance. This directed our attention to carboxylation and the abundance of the heat-sensitive chaperone Rubisco activase (Rca) in each species. Surprisingly, O. australiensis leaves at 45 °C had 50% less Rca per unit Rubisco, even though CO2 assimilation was faster than at 30 °C. By contrast, Rca per unit Rubisco doubled in O. sativa at 45 °C while CO2 assimilation was slower, reflecting its inferior Rca thermostability. Plants grown at 45 °C were simultaneously exposed to 700 ppm CO2 to enhance the CO2 supply to Rubisco. Growth at 45 °C responded to CO2 enrichment in O. australiensis but not O. sativa, reflecting more robust carboxylation capacity and thermal tolerance in the wild rice relative.


Asunto(s)
Oryza , Oryza/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Dióxido de Carbono , Temperatura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Australia , Fotosíntesis
7.
Plant Cell Environ ; 45(4): 1242-1256, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35092006

RESUMEN

Heat stress specifically affects fertility by impairing pollen viability but cotton wild relatives successfully reproduce in hot savannas where they evolved. An Australian arid-zone cotton (Gossypium robinsonii) was exposed to heat events during pollen development then mature pollen was subjected to deep proteomic analysis using 57 023 predicted genes from a genomic database we assembled for the same species. Three stages of pollen development, including tetrads (TEs), uninucleate microspores (UNs) and binucleate microspores (BNs) were exposed to 36°C or 40°C for 5 days and the resulting mature pollen was collected at anthesis (p-TE, p-UN and p-BN, respectively). Using the sequential windowed acquisition of all theoretical mass spectra proteomic analysis, 2704 proteins were identified and quantified across all pollen samples analysed. Proteins predominantly decreased in abundance at all stages in response to heat, particularly after exposure of TEs to 40°C. Functional enrichment analyses demonstrated that extreme heat increased the abundance of proteins that contributed to increased messenger RNA splicing via spliceosome, initiation of cytoplasmic translation and protein refolding in p-TE40. However, other functional categories that contributed to intercellular transport were inhibited in p-TE40, linked potentially to Rab proteins. We ascribe the resilience of reproductive processes in G. robinsonii at temperatures up to 40°C, relative to commercial cotton, to a targeted reduction in protein transport.


Asunto(s)
Calor Extremo , Gossypium , Australia , Polen , Proteómica
8.
J Exp Bot ; 73(3): 873-885, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34153103

RESUMEN

Mesophyll conductance (gm) is a crucial leaf trait contributing to the photosynthetic rate (AN). Plant domestication typically leads to an enhancement of AN that is often associated with profound anatomical modifications, but it is unclear which of these structural alterations influence gm. We analyzed the implication of domestication on leaf anatomy and its effect on gm in 26 wild and 31 domesticated cotton genotypes (Gossypium sp.) grown under field conditions. We found that domesticated genotypes had higher AN but similar gm to wild genotypes. Consistent with this, domestication did not translate into significant differences in the fraction of mesophyll occupied by intercellular air spaces (fias) or mesophyll and chloroplast surface area exposed to intercellular air space (Sm/S and Sc/S, respectively). However, leaves of domesticated genotypes were significantly thicker, with larger but fewer mesophyll cells with thinner cell walls. Moreover, domesticated genotypes had higher cell wall conductance (gcw) but smaller cytoplasmic conductance (gcyt) than wild genotypes. It appears that domestication in cotton has not generally led to significant improvement in gm, in part because their thinner mesophyll cell walls (increasing gcw) compensate for their lower gcyt, itself due to larger distance between plasmalemma and chloroplast envelopes.


Asunto(s)
Gossypium , Células del Mesófilo , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Gossypium/genética , Fotosíntesis , Hojas de la Planta/genética
9.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36555193

RESUMEN

Food safety of staple crops such as rice is of global concern and is at the top of the policy agenda worldwide. Abiotic stresses are one of the main limitations to optimizing yields for sustainability, food security and food safety. We analyzed proteome changes in Oryza sativa cv. Nipponbare in response to five adverse abiotic treatments, including three levels of drought (mild, moderate, and severe), soil salinization, and non-optimal temperatures. All treatments had modest, negative effects on plant growth, enabling us to identify proteins that were common to all stresses, or unique to one. More than 75% of the total of differentially abundant proteins in response to abiotic stresses were specific to individual stresses, while fewer than 5% of stress-induced proteins were shared across all abiotic constraints. Stress-specific and non-specific stress-responsive proteins identified were categorized in terms of core biological processes, molecular functions, and cellular localization.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Proteoma/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/fisiología , Temperatura , Regulación de la Expresión Génica de las Plantas , Sequías
10.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35163659

RESUMEN

Rice crops are often subject to multiple abiotic stresses simultaneously in both natural and cultivated environments, resulting in yield reductions beyond those expected from single stress. We report physiological changes after a 4 day exposure to combined drought, salt and extreme temperature treatments, following a 2 day salinity pre-treatment in two rice genotypes-Nipponbare (a paddy rice) and IAC1131 (an upland landrace). Stomata closed after two days of combined stresses, causing intercellular CO2 concentrations and assimilation rates to diminish rapidly. Abscisic acid (ABA) levels increased at least five-fold but did not differ significantly between the genotypes. Tandem Mass Tag isotopic labelling quantitative proteomics revealed 6215 reproducibly identified proteins in mature leaves across the two genotypes and three time points (0, 2 and 4 days of stress). Of these, 987 were differentially expressed due to stress (cf. control plants), including 41 proteins that changed significantly in abundance in all stressed plants. Heat shock proteins, late embryogenesis abundant proteins and photosynthesis-related proteins were consistently responsive to stress in both Nipponbare and IAC1131. Remarkably, even after 2 days of stress there were almost six times fewer proteins differentially expressed in IAC1131 than Nipponbare. This contrast in the translational response to multiple stresses is consistent with the known tolerance of IAC1131 to dryland conditions.


Asunto(s)
Oryza/fisiología , Estrés Fisiológico/fisiología , Ácido Abscísico/metabolismo , Gases/metabolismo , Regulación de la Expresión Génica de las Plantas , Genotipo , Oryza/genética , Fotosíntesis , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteómica , Estrés Fisiológico/genética
11.
New Phytol ; 230(4): 1421-1434, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33496969

RESUMEN

Elevated atmospheric CO2 (eCa ) may benefit plants during drought by reducing stomatal conductance (gs ) but any 'water savings effect' could be neutralized by concurrent stimulation of leaf area. We investigated whether eCa enhanced water savings, thereby ameliorating the impact of drought on carbon and water relations in trees. We report leaf-level gas exchange and whole-plant and soil water relations during a short-term dry-down in two Eucalyptus species with contrasting drought tolerance. Plants had previously been established for 9 to 11 months in steady-state conditions of ambient atmospheric CO2 (aCa ) and eCa , with half of each treatment group exposed to sustained drought for 5 to 7 months. The lower stomatal conductance under eCa did not lead to soil moisture savings during the dry-down due to the counteractive effect of increased whole-plant leaf area. Nonetheless, eCa -grown plants maintained higher photosynthetic rates and leaf water potentials, making them less stressed during the dry-down, despite being larger. These effects were more pronounced in the xeric species than the mesic species, and in previously water-stressed plants. Our findings indicate that eCa may enhance plant performance during drought despite a lack of soil water savings, especially in species with more conservative growth and water-use strategies.


Asunto(s)
Sequías , Eucalyptus , Dióxido de Carbono , Fotosíntesis , Hojas de la Planta , Árboles , Agua
12.
Plant Cell Environ ; 44(7): 2150-2166, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33047317

RESUMEN

The development of gametes in plants is acutely susceptible to heatwaves as brief as a few days, adversely affecting pollen maturation and reproductive success. Pollen in cotton (Gossypium hirsutum) was differentially affected when tetrad and binucleate stages were exposed to heat, revealing new insights into the interaction between heat and pollen development. Squares were tagged and exposed to 36/25°C (day/night, moderate heat) or 40/30°C (day/night, extreme heat) for 5 days. Mature pollen grains and leaves were collected for physiological and proteomic responses. While photosynthetic competence was not compromised even at 40°C, leaf tissues became leakier. In contrast, pollen grains were markedly smaller after the tetrad stage was exposed to 40°C and boll production was reduced by 65%. Sugar levels in pollen grains were elevated after exposure to heat, eliminating carbohydrate deficits as a likely cause of poor reproductive capacity. Proteomic analysis of pure pollen samples revealed a particularly high abundance of 70-kDa heat shock (Hsp70s) and cytoskeletal proteins. While short-term bursts of heat had a minor impact on leaves, male gametophyte development was profoundly damaged. Cotton acclimates to maxima of 36°C at both the vegetative and reproductive stages but 5-days exposure to 40°C significantly impairs reproductive development.


Asunto(s)
Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Respuesta al Choque Térmico/fisiología , Proteínas de Plantas/metabolismo , Polen/crecimiento & desarrollo , Electrólitos/metabolismo , Proteínas de Choque Térmico/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Polen/metabolismo , Semillas/metabolismo , Almidón/metabolismo , Sacarosa/metabolismo , Azúcares/metabolismo , Termotolerancia/fisiología
13.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825202

RESUMEN

Drought often compromises yield in non-irrigated crops such as rainfed rice, imperiling the communities that depend upon it as a primary food source. In this study, two cultivated species (Oryza sativa cv. Nipponbare and Oryza glaberrima cv. CG14) and an endemic, perennial Australian wild species (Oryza australiensis) were grown in soil at 40% field capacity for 7 d (drought). The hypothesis was that the natural tolerance of O. australiensis to erratic water supply would be reflected in a unique proteomic profile. Leaves from droughted plants and well-watered controls were harvested for label-free quantitative shotgun proteomics. Physiological and gene ontology analysis confirmed that O. australiensis responded uniquely to drought, with superior leaf water status and enhanced levels of photosynthetic proteins. Distinctive patterns of protein accumulation in drought were observed across the O. australiensis proteome. Photosynthetic and stress-response proteins were more abundant in drought-affected O. glaberrima than O. sativa, and were further enriched in O. australiensis. In contrast, the level of accumulation of photosynthetic proteins decreased when O. sativa underwent drought, while a narrower range of stress-responsive proteins showed increased levels of accumulation. Distinctive proteomic profiles and the accumulated levels of individual proteins with specific functions in response to drought in O. australiensis indicate the importance of this species as a source of stress tolerance genes.


Asunto(s)
Sequías , Oryza/genética , Fitomejoramiento , Proteoma/metabolismo , Estrés Fisiológico , Oryza/metabolismo , Proteoma/genética , Selección Artificial
14.
Int J Mol Sci ; 21(1)2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31935846

RESUMEN

Rice is a critically important food source but yields worldwide are vulnerable to periods of drought. We exposed eight genotypes of upland and lowland rice (Oryza sativa L. ssp. japonica and indica) to drought stress at the late vegetative stage, and harvested leaves for label-free shotgun proteomics. Gene ontology analysis was used to identify common drought-responsive proteins in vegetative tissues, and leaf proteins that are unique to individual genotypes, suggesting diversity in the metabolic responses to drought. Eight proteins were found to be induced in response to drought stress in all eight genotypes. A total of 213 proteins were identified in a single genotype, 83 of which were increased in abundance in response to drought stress. In total, 10 of these 83 proteins were of a largely uncharacterized function, making them candidates for functional analysis and potential biomarkers for drought tolerance.


Asunto(s)
Sequías , Variación Genética , Oryza/genética , Proteínas de Plantas/genética , Proteoma/genética , Estrés Fisiológico , Genotipo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo
15.
Proteomics ; 19(9): e1800310, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30891909

RESUMEN

Plants require a distinctive cohort of enzymes to coordinate cell division and expansion. Proteomic analysis now enables interrogation of immature leaf bases where these processes occur. Hence, proteins in tissues sampled from leaves of a drought-tolerant rice (IAC1131) are investigated to provide insights into the effect of soil drying on gene expression relative to the drought-sensitive genotype Nipponbare. Shoot growth zones are dissected to estimate the proportion of dividing cells and extract protein for subsequent tandem mass tags quantitative proteomic analysis. Gene ontology annotations of differentially expressed proteins provide insights into responses of Nipponbare and IAC1131 to drought. Soil drying does not affect the percentage of mitotic cells in IAC1131. More than 800 proteins across most functional categories increase in drought (and decrease on rewatering) in IAC1131, including proteins involved in "organizing the meristem" and "new cell formation". On the other hand, the percentage of dividing cells in Nipponbare is severely impaired during drought and fewer than 200 proteins respond in abundance when growing zones undergo a drying cycle. Remarkably, the proteomes of the growing zones of each genotype respond in a highly distinctive manner, reflecting their contrasting drought tolerance even at the earliest stages of leaf development.


Asunto(s)
Oryza/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteómica , Sequías , Regulación de la Expresión Génica de las Plantas , Genotipo , Anotación de Secuencia Molecular , Oryza/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Proteoma/genética , Estrés Fisiológico/genética
16.
Proteomics ; 19(19): e1900175, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31475433

RESUMEN

Salinity is a major constraint on rice productivity worldwide. However, mechanisms of salt tolerance in wild rice relatives are unknown. Root microsomal proteins are extracted from two Oryza australiensis accessions contrasting in salt tolerance. Whole roots of 2-week-old seedlings are treated with 80 mM NaCl for 30 days to induce salt stress. Proteins are quantified by tandem mass tags (TMT) and triple-stage Mass Spectrometry. More than 200 differentially expressed proteins between the salt-treated and control samples in the two accessions (p-value <0.05) are found. Gene Ontology (GO) analysis shows that proteins categorized as "metabolic process," "transport," and "transmembrane transporter" are highly responsive to salt treatment. In particular, mitochondrial ATPases and SNARE proteins are more abundant in roots of the salt-tolerant accession and responded strongly when roots are exposed to salinity. mRNA quantification validated the elevated protein abundances of a monosaccharide transporter and an antiporter observed in the salt-tolerant genotype. The importance of the upregulated monosaccharide transporter and a VAMP-like protein by measuring salinity responses of two yeast knockout mutants for genes homologous to those encoding these proteins in rice are confirmed. Potential new mechanisms of salt tolerance in rice, with implications for breeding of elite cultivars are also discussed.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantones/metabolismo , Cloruro de Sodio/farmacología , Metabolismo Energético/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Oryza/clasificación , Oryza/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Salinidad , Tolerancia a la Sal/efectos de los fármacos , Tolerancia a la Sal/genética , Plantones/genética , Especificidad de la Especie
17.
Planta ; 245(2): 459-465, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27990573

RESUMEN

MAIN CONCLUSION: Explicit proof for de novo origin of a rare post-illumination monoterpene burst and its consistency under low O 2 , shows interaction of photorespiration, photosynthesis, and isoprenoid biosynthesis during light-dark transitions. Quercus ilex L (holm oak) constitutively emits foliar monoterpenes in an isoprene-like fashion via the methyl erythritol phosphate (MEP) pathway located in chloroplasts. Isoprene-emitting plants are known to exhibit post-illumination isoprene burst, a transient emission of isoprene in darkness. An analogous post-illumination monoterpene burst (PiMB) had remained elusive and is reported here for the first time in Q. ilex. Using 13CO2 labelling, we show that PiMB is made from freshly fixed carbon. PiMB is rare at ambient (20%) O2, absent at high (50%) O2, and becomes consistent in leaves exposed to low (2%) O2. PiMB is stronger and occurs earlier at higher temperatures. We also show that primary and secondary post-illumination CO 2 bursts (PiCO2B) are sensitive to O2 in Q. ilex. The primary photorespiratory PiCO2B is absent under both ambient and low O2, but is induced under high (>50%) O2, while the secondary PiCO2B (of unknown origin) is absent under ambient, but present at low and high O2. We propose that post-illumination recycling of photorespired CO2 competes with the MEP pathway for photosynthetic carbon and energy, making PiMB rare under ambient O2 and absent at high O2. PiMB becomes consistent when photorespiration is suppressed in Q. ilex.


Asunto(s)
Monoterpenos/metabolismo , Quercus/metabolismo , Butadienos/metabolismo , Dióxido de Carbono/metabolismo , Oscuridad , Hemiterpenos/metabolismo , Luz , Oxígeno/metabolismo , Pentanos/metabolismo , Hojas de la Planta/metabolismo
18.
Plant J ; 82(1): 25-40, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25650041

RESUMEN

Coleoptiles of rice (Oryza sativa) seedlings grown under water commonly elongate by up to 1 mm h(-1) to reach the atmosphere. We initially analysed this highly specialized phenomenon by measuring epidermal cell lengths along the coleoptile axis to determine elongation rates. This revealed a cohort of cells in the basal zone that elongated rapidly following emergence from the embryo, reaching 200 µm within 12 h. After filming coleoptiles in vivo for a day, kinematic analysis was applied. Eight time-sliced 'segments' were defined by their emergence from the embryo at four-hourly intervals, revealing a mathematically simple growth model. Each segment entering the coleoptile from the embryo elongated at a constant velocity, resulting in accelerating growth for the entire organ. Consistent with the epidermal cell lengths, relative rates of elongation (mm mm(-1) h(-1)) were tenfold greater in the small, newly emerged basal segments than the older distal tip segments. This steep axial gradient defined two contrasting growth zones (bases versus tips) in which we measured ATP production and protein, RNA and DNA content, and analysed the global transcriptome under steady-state normoxia, hypoxia (3% O2) and anoxia. Determination of the transcriptome revealed tip-specific induction of genes encoding TCP [Teosinte Branched1 (Tb1) of maize, Cycloidea (Cyc), and Proliferating Cell Factor (Pcf)] transcription factors, RNA helicases, ribosomal proteins and proteins involved in protein folding, whilst expression of F-box domain-containing proteins in the ubiquitin E3-SCF complex (Skp, Cullin, F-box containing complex) was induced specifically in bases under low oxygen conditions. We ascribed the sustained elongation under hypoxia to hypoxia-specific responses such as controlled suppression of photosystem components and induction of RNA binding/splicing functions, indicating preferential allocation of energy to cell extension.


Asunto(s)
Cotiledón/genética , Oryza/genética , Oxígeno/metabolismo , Cotiledón/crecimiento & desarrollo , Cotiledón/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo
19.
New Phytol ; 209(4): 1600-12, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26526873

RESUMEN

Models of tree responses to climate typically project that elevated atmospheric CO2 concentration (eCa ) will reduce drought impacts on forests. We tested one of the mechanisms underlying this interaction, the 'low Ci effect', in which stomatal closure in drought conditions reduces the intercellular CO2 concentration (Ci ), resulting in a larger relative enhancement of photosynthesis with eCa , and, consequently, a larger relative biomass response. We grew two Eucalyptus species of contrasting drought tolerance at ambient and elevated Ca for 6-9 months in large pots maintained at 50% (drought) and 100% field capacity. Droughted plants did not have significantly lower Ci than well-watered plants, which we attributed to long-term changes in leaf area. Hence, there should not have been an interaction between eCa and water availability on biomass, and we did not detect one. The xeric species did have higher Ci than the mesic species, indicating lower water-use efficiency, but both species exhibited similar responses of photosynthesis and biomass to eCa , owing to compensatory differences in the photosynthetic response to Ci . Our results demonstrate that long-term acclimation to drought, and coordination among species traits may be important for predicting plant responses to eCa under low water availability.


Asunto(s)
Dióxido de Carbono/farmacología , Sequías , Espacio Extracelular/metabolismo , Árboles/fisiología , Biomasa , Clima , Eucalyptus/efectos de los fármacos , Eucalyptus/fisiología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Transpiración de Plantas/efectos de los fármacos , Transpiración de Plantas/fisiología , Árboles/efectos de los fármacos , Agua
20.
New Phytol ; 211(3): 899-911, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27145723

RESUMEN

The mechanistic basis of tolerance to heat stress was investigated in Oryza sativa and two wild rice species, Oryza meridionalis and Oryza australiensis. The wild relatives are endemic to the hot, arid Australian savannah. Leaf elongation rates and gas exchange were measured during short periods of supra-optimal heat, revealing species differences. The Rubisco activase (RCA) gene from each species was sequenced. Using expressed recombinant RCA and leaf-extracted RCA, the kinetic properties of the two isoforms were studied under high temperatures. Leaf elongation was undiminished at 45°C in O. australiensis. The net photosynthetic rate was almost 50% slower in O. sativa at 45°C than at 28°C, while in O. australiensis it was unaffected. Oryza meridionalis exhibited intermediate heat tolerance. Based on previous reports that RCA is heat-labile, the Rubisco activation state was measured. It correlated positively with leaf elongation rates across all three species and four periods of exposure to 45°C. Sequence analysis revealed numerous polymorphisms in the RCA amino acid sequence from O. australiensis. The O. australiensis RCA enzyme was thermally stable up to 42°C, contrasting with RCA from O. sativa, which was inhibited at 36°C. We attribute heat tolerance in the wild species to thermal stability of RCA, enabling Rubisco to remain active.


Asunto(s)
Oryza/enzimología , Oryza/fisiología , Proteínas de Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Termotolerancia/fisiología , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Activación Enzimática , Estabilidad de Enzimas , Genes de Plantas , Genotipo , Calor , Hidrólisis , Oryza/genética , Fotosíntesis , Proteínas de Plantas/genética , Estomas de Plantas/fisiología , Proteínas Recombinantes/metabolismo , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/genética , Alineación de Secuencia , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA