Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nucleic Acids Res ; 52(2): 643-659, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38038247

RESUMEN

Mislocalization of overexpressed CENP-A (Cse4 in budding yeast, Cnp1 in fission yeast, CID in flies) contributes to chromosomal instability (CIN) in yeasts, flies, and human cells. Mislocalization of CENP-A is observed in many cancers and this correlates with poor prognosis. Structural mechanisms that contribute to mislocalization of CENP-A are poorly defined. Here, we show that interaction of histone H4 with Cse4 facilitates an in vivo conformational change in Cse4 promoting its mislocalization in budding yeast. We determined that Cse4 Y193A mutant exhibits reduced sumoylation, mislocalization, interaction with histone H4, and lethality in psh1Δ and cdc48-3 strains; all these phenotypes are suppressed by increased gene dosage of histone H4. We developed a new in vivo approach, antibody accessibility (AA) assay, to examine the conformation of Cse4. AA assay showed that wild-type Cse4 with histone H4 is in an 'open' state, while Cse4 Y193A predominantly exhibits a 'closed' state. Increased gene dosage of histone H4 contributes to a shift of Cse4 Y193A to an 'open' state with enhanced sumoylation and mislocalization. We provide molecular insights into how Cse4-H4 interaction changes the conformational state of Cse4 in vivo. These studies advance our understanding for mechanisms that promote mislocalization of CENP-A in human cancers.


Asunto(s)
Proteínas Cromosómicas no Histona , Histonas , Proteínas de Saccharomyces cerevisiae , Humanos , Centrómero/metabolismo , Proteína A Centromérica/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Histonas/metabolismo , Neoplasias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilación
2.
Nucleic Acids Res ; 50(6): 3276-3291, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35234920

RESUMEN

Restricting the localization of CENP-A (Cse4 in Saccharomyces cerevisiae) to centromeres prevents chromosomal instability (CIN). Mislocalization of overexpressed CENP-A to non-centromeric chromatin contributes to CIN in budding and fission yeasts, flies, and humans. Overexpression and mislocalization of CENP-A is observed in cancers and is associated with increased invasiveness. Mechanisms that remove mislocalized CENP-A and target it for degradation have not been defined. Here, we report that Cdc48 and its cofactors Ufd1 and Npl4 facilitate the removal of mislocalized Cse4 from non-centromeric chromatin. Defects in removal of mislocalized Cse4 contribute to lethality of overexpressed Cse4 in cdc48,ufd1 andnpl4 mutants. High levels of polyubiquitinated Cse4 and mislocalization of Cse4 are observed in cdc48-3, ufd1-2 and npl4-1mutants even under normal physiological conditions, thereby defining polyubiquitinated Cse4 as the substrate of the ubiquitin directed segregase Cdc48Ufd1/Npl4. Accordingly, Npl4, the ubiquitin binding receptor, associates with mislocalized Cse4, and this interaction is dependent on Psh1-mediated polyubiquitination of Cse4. In summary, we provide the first evidence for a mechanism that facilitates the removal of polyubiquitinated and mislocalized Cse4 from non-centromeric chromatin. Given the conservation of Cdc48Ufd1/Npl4 in humans, it is likely that defects in such pathways may contribute to CIN in human cancers.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína que Contiene Valosina/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Centrómero/metabolismo , Proteína A Centromérica/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Proteolisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo
3.
PLoS Genet ; 16(2): e1008597, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32032354

RESUMEN

Restricting the localization of the histone H3 variant CENP-A (Cse4 in yeast, CID in flies) to centromeres is essential for faithful chromosome segregation. Mislocalization of CENP-A leads to chromosomal instability (CIN) in yeast, fly and human cells. Overexpression and mislocalization of CENP-A has been observed in many cancers and this correlates with increased invasiveness and poor prognosis. Yet genes that regulate CENP-A levels and localization under physiological conditions have not been defined. In this study we used a genome-wide genetic screen to identify essential genes required for Cse4 homeostasis to prevent its mislocalization for chromosomal stability. We show that two Skp, Cullin, F-box (SCF) ubiquitin ligases with the evolutionarily conserved F-box proteins Met30 and Cdc4 interact and cooperatively regulate proteolysis of endogenous Cse4 and prevent its mislocalization for faithful chromosome segregation under physiological conditions. The interaction of Met30 with Cdc4 is independent of the D domain, which is essential for their homodimerization and ubiquitination of other substrates. The requirement for both Cdc4 and Met30 for ubiquitination is specifc for Cse4; and a common substrate for Cdc4 and Met30 has not previously been described. Met30 is necessary for the interaction between Cdc4 and Cse4, and defects in this interaction lead to stabilization and mislocalization of Cse4, which in turn contributes to CIN. We provide the first direct link between Cse4 mislocalization to defects in kinetochore structure and show that SCF-mediated proteolysis of Cse4 is a major mechanism that prevents stable maintenance of Cse4 at non-centromeric regions, thus ensuring faithful chromosome segregation. In summary, we have identified essential pathways that regulate cellular levels of endogenous Cse4 and shown that proteolysis of Cse4 by SCF-Met30/Cdc4 prevents mislocalization and CIN in unperturbed cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Inestabilidad Cromosómica , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Centrómero/metabolismo , Segregación Cromosómica , Dominios Proteicos , Proteolisis , Ubiquitinación
4.
PLoS Genet ; 7(9): e1002303, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21980305

RESUMEN

The kinetochore (centromeric DNA and associated proteins) is a key determinant for high fidelity chromosome transmission. Evolutionarily conserved Scm3p is an essential component of centromeric chromatin and is required for assembly and function of kinetochores in humans, fission yeast, and budding yeast. Overexpression of HJURP, the mammalian homolog of budding yeast Scm3p, has been observed in lung and breast cancers and is associated with poor prognosis; however, the physiological relevance of these observations is not well understood. We overexpressed SCM3 and HJURP in Saccharomyces cerevisiae and HJURP in human cells and defined domains within Scm3p that mediate its chromosome loss phenotype. Our results showed that the overexpression of SCM3 (GALSCM3) or HJURP (GALHJURP) caused chromosome loss in a wild-type yeast strain, and overexpression of HJURP led to mitotic defects in human cells. GALSCM3 resulted in reduced viability in kinetochore mutants, premature separation of sister chromatids, and reduction in Cse4p and histone H4 at centromeres. Overexpression of CSE4 or histone H4 suppressed chromosome loss and restored levels of Cse4p at centromeres in GALSCM3 strains. Using mutant alleles of scm3, we identified a domain in the N-terminus of Scm3p that mediates its interaction with CEN DNA and determined that the chromosome loss phenotype of GALSCM3 is due to centromeric association of Scm3p devoid of Cse4p/H4. Furthermore, we determined that similar to other systems the centromeric association of Scm3p is cell cycle regulated. Our results show that altered stoichiometry of Scm3p/HJURP, Cse4p, and histone H4 lead to defects in chromosome segregation. We conclude that stringent regulation of HJURP and SCM3 expression are critical for genome stability.


Asunto(s)
Inestabilidad Cromosómica/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Centrómero/genética , Centrómero/metabolismo , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/genética , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Histonas/metabolismo , Humanos , Cinetocoros/metabolismo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Genetics ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984710

RESUMEN

Centromeric localization of evolutionarily conserved CENP-A (Cse4 in Saccharomyces cerevisiae) is essential for chromosomal stability. Mislocalization of overexpressed CENP-A to non-centromeric regions contributes to chromosomal instability (CIN) in yeasts, flies, and humans. Overexpression and mislocalization of CENP-A observed in many cancers is associated with poor prognosis. Previous studies have shown that F-box proteins, Cdc4 and Met30 of the Skp, Cullin, F-box (SCF) ubiquitin ligase cooperatively regulate proteolysis of Cse4 to prevent Cse4 mislocalization and CIN under normal physiological conditions. Mck1-mediated phosphorylation of SCF-Cdc4 substrates such as Cdc6 and Rcn1 enhances the interaction of the substrates with Cdc4. Here, we report that Mck1 interacts with Cse4, and Mck1-mediated proteolysis of Cse4 prevents Cse4 mislocalization for chromosomal stability. Our results showed that mck1Δ strain overexpressing CSE4 (GAL-CSE4) exhibits lethality, defects in ubiquitin-mediated proteolysis of Cse4, mislocalization of Cse4 and reduced Cse4-Cdc4 interaction. Strain expressing GAL-cse4-3A with mutations in three potential Mck1 phosphorylation consensus site (S10, S16, and T166) also exhibits growth defects, increased stability with mislocalization of Cse4-3A, CIN, and reduced interaction with Cdc4. Constitutive expression of histone H3 (Δ16H3) suppresses the CIN phenotype of GAL-cse4-3A strain, suggesting that the CIN phenotype is linked to Cse4-3A mislocalization. We conclude that Mck1 and its three potential phosphorylation sites on Cse4 promote Cse4-Cdc4 interaction and this contributes to ubiquitin-mediated proteolysis of Cse4 preventing its mislocalization and CIN. These studies advance our understanding of pathways that regulate cellular levels of CENP-A to prevent mislocalization of CENP-A in human cancers.

6.
Mol Cell Biol ; : 1-14, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135477

RESUMEN

Restricting the localization of evolutionarily conserved histone H3 variant CENP-A to the centromere is essential to prevent chromosomal instability (CIN), an important hallmark of cancers. Overexpressed CENP-A mislocalizes to non-centromeric regions and contributes to CIN in yeast, flies, and human cells. Centromeric localization of CENP-A is facilitated by the interaction of Mis18ß with CENP-A specific chaperone HJURP. Cellular levels of Mis18ß are regulated by ß-transducin repeat containing protein (ß-TrCP), an F-box protein of SCF (Skp1, Cullin, F-box) E3-ubiquitin ligase complex. Here, we show that defects in ß-TrCP-mediated proteolysis of Mis18ß contributes to the mislocalization of endogenous CENP-A and CIN in a triple-negative breast cancer (TNBC) cell line, MDA-MB-231. CENP-A mislocalization in ß-TrCP depleted cells is dependent on high levels of Mis18ß as depletion of Mis18ß suppresses mislocalization of CENP-A in these cells. Consistent with these results, endogenous CENP-A is mislocalized in cells overexpressing Mis18ß alone. In summary, our results show that ß-TrCP-mediated degradation of Mis18ß prevents mislocalization of CENP-A and CIN. We propose that deregulated expression of Mis18ß may be one of the key mechanisms that contributes to chromosome segregation defects in cancers.

7.
Biochim Biophys Acta ; 1819(7): 776-83, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22366340

RESUMEN

At the core of chromosome segregation is the centromere, which nucleates the assembly of a macromolecular kinetochore (centromere DNA and associated proteins) complex responsible for mediating spindle attachment. Recent advances in centromere research have led to identification of many kinetochore components, such as the centromeric-specific histone H3 variant, CenH3, and its interacting partner, Scm3. Both are essential for chromosome segregation and are evolutionarily conserved from yeast to humans. CenH3 is proposed to be the epigenetic mark that specifies centromeric identity. Molecular mechanisms that regulate the assembly of kinetochores at specific chromosomal sites to mediate chromosome segregation are not fully understood. In this review, we summarize the current literature and discuss results from our laboratory, which show that restricting the localization of budding yeast CenH3, Cse4, to centromeres and balanced stoichiometry between Scm3 and Cse4, contribute to faithful chromosome transmission. We highlight our findings that, similar to other eukaryotic centromeres, budding yeast centromeric histone H4 is hypoacetylated, and we discuss how altered histone acetylation affects chromosome segregation. This article is part of a Special Issue entitled: Chromatin in time and space.


Asunto(s)
Centrómero/genética , Ensamble y Desensamble de Cromatina , Cromatina/genética , Saccharomyces cerevisiae/genética , Animales , Centrómero/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Inestabilidad Genómica , Histonas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Biochem Biophys Res Commun ; 439(4): 443-8, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-24012676

RESUMEN

The evolutionarily conserved MEC1 checkpoint pathway mediates cell cycle arrest and induction of genes including the RNR (Ribonucleotide reductase) genes and HUG1 (Hydroxyurea, ultraviolet, and gamma radiation) in response to DNA damage and replication arrest. Rnr complex activity is in part controlled by cytoplasmic localization of the Rnr2p-Rnr4p subunits and inactivation of negative regulators Sml1p and Dif1p upon DNA damage and hydroxyurea (HU) treatment. We previously showed that a deletion of HUG1 rescues lethality of mec1Δ and suppresses dun1Δ strains. In this study, multiple approaches demonstrate the regulatory response of Hug1p to DNA damage and HU treatment and support its role as a negative effector of the MEC1 pathway. Consistent with our hypothesis, wild-type cells are sensitive to DNA damage and HU when HUG1 is overexpressed. A Hug1 polyclonal antiserum reveals that HUG1 encodes a protein in budding yeast and its MEC1-dependent expression is delayed compared to the rapid induction of Rnr3p in response to HU treatment. Cell biology and subcellular fractionation experiments show localization of Hug1p-GFP to the cytoplasm upon HU treatment. The cytoplasmic localization of Hug1p-GFP is dependent on MEC1 pathway genes and coincides with the cytoplasmic localization of Rnr2p-Rnr4p. Taken together, the genetic interactions, gene expression, and localization studies support a novel role for Hug1p as a negative regulator of the MEC1 checkpoint response through its compartmentalization with Rnr2p-Rnr4p.


Asunto(s)
Citoplasma/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ribonucleósido Difosfato Reductasa/metabolismo , Ribonucleótido Reductasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulación Fúngica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Ribonucleósido Difosfato Reductasa/genética , Ribonucleótido Reductasas/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Mol Biol Cell ; 34(10): ar99, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37436802

RESUMEN

Centromere (CEN) identity is specified epigenetically by specialized nucleosomes containing evolutionarily conserved CEN-specific histone H3 variant CENP-A (Cse4 in Saccharomyces cerevisiae, CENP-A in humans), which is essential for faithful chromosome segregation. However, the epigenetic mechanisms that regulate Cse4 function have not been fully defined. In this study, we show that cell cycle-dependent methylation of Cse4-R37 regulates kinetochore function and high-fidelity chromosome segregation. We generated a custom antibody that specifically recognizes methylated Cse4-R37 and showed that methylation of Cse4 is cell cycle regulated with maximum levels of methylated Cse4-R37 and its enrichment at the CEN chromatin occur in the mitotic cells. Methyl-mimic cse4-R37F mutant exhibits synthetic lethality with kinetochore mutants, reduced levels of CEN-associated kinetochore proteins and chromosome instability (CIN), suggesting that mimicking the methylation of Cse4-R37 throughout the cell cycle is detrimental to faithful chromosome segregation. Our results showed that SPOUT methyltransferase Upa1 contributes to methylation of Cse4-R37 and overexpression of UPA1 leads to CIN phenotype. In summary, our studies have defined a role for cell cycle-regulated methylation of Cse4 in high-fidelity chromosome segregation and highlight an important role of epigenetic modifications such as methylation of kinetochore proteins in preventing CIN, an important hallmark of human cancers.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Humanos , Ciclo Celular , Centrómero/metabolismo , Proteína A Centromérica/metabolismo , Inestabilidad Cromosómica , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Metilación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo
10.
J Biol Chem ; 285(50): 39564-73, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-20923770

RESUMEN

Arn1 is an integral membrane protein that mediates the uptake of ferrichrome, an important nutritional source of iron, in Saccharomyces cerevisiae. In the absence of ferrichrome, Arn1p is sorted directly from the trans-Golgi network to the vacuolar lumen for degradation. In the presence of low levels of ferrichrome, the siderophore binds to a receptor domain on Arn1, triggering the redistribution of Arn1 to the plasma membrane. When extracellular ferrichrome levels are high, Arn1 cycles between the plasma membrane and intracellular vesicles. To further understand the mechanisms of trafficking of Arn1p, we screened 4580 viable yeast deletion mutants for mislocalization of Arn1-GFP using synthetic genetic array technology. We identified over 100 genes required for trans-Golgi network-to-vacuole trafficking of Arn1-GFP and only two genes, SER1 and SER2, required for the ferrichrome-induced plasma membrane trafficking of Arn1-GFP. SER1 and SER2 encode two enzymes of the major serine biosynthetic pathway, and the Arn1 trafficking defect in the ser1Δ strain was corrected with supplemental serine or glycine. Plasma membrane trafficking of Hxt3, a structurally related glucose transporter, was unaffected by SER1 deletion. Serine is required for the synthesis of multiple cellular components, including purines, sphingolipids, and phospholipids, but of these only phosphatidylserine corrected the Arn1 trafficking defects of the ser1Δ strain. Strains with defects in phospholipid synthesis also exhibited alterations in Arn1p trafficking, indicating that the intracellular trafficking of some transporters is dependent on the phospholipid composition of the cellular membranes.


Asunto(s)
Membrana Celular/metabolismo , Ferricromo/química , Proteínas de Transporte de Membrana/metabolismo , Fosfatidilserinas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Endocitosis , Eliminación de Gen , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Hierro/química , Lípidos/química , Metales/química , Microscopía Fluorescente/métodos , Fosfolípidos/química , Sideróforos/metabolismo , Red trans-Golgi/metabolismo
11.
Genetics ; 218(1)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33751052

RESUMEN

Mislocalization of the centromeric histone H3 variant (Cse4 in budding yeast, CID in flies, CENP-A in humans) to noncentromeric regions contributes to chromosomal instability (CIN) in yeast, fly, and human cells. Overexpression and mislocalization of CENP-A have been observed in cancers, however, the mechanisms that facilitate the mislocalization of overexpressed CENP-A have not been fully explored. Defects in proteolysis of overexpressed Cse4 (GALCSE4) lead to its mislocalization and synthetic dosage lethality (SDL) in mutants for E3 ubiquitin ligases (Psh1, Slx5, SCFMet30, and SCFCdc4), Doa1, Hir2, and Cdc7. In contrast, defects in sumoylation of overexpressed cse4K215/216/A/R prevent its mislocalization and do not cause SDL in a psh1Δ strain. Here, we used a genome-wide screen to identify factors that facilitate the mislocalization of overexpressed Cse4 by characterizing suppressors of the psh1Δ GALCSE4 SDL. Deletions of histone H4 alleles (HHF1 or HHF2), which were among the most prominent suppressors, also suppress slx5Δ, cdc4-1, doa1Δ, hir2Δ, and cdc7-4 GALCSE4 SDL. Reduced dosage of H4 leads to defects in sumoylation and reduced mislocalization of overexpressed Cse4, which contributes to suppression of CIN when Cse4 is overexpressed. We determined that the hhf1-20, cse4-102, and cse4-111 mutants, which are defective in the Cse4-H4 interaction, also exhibit reduced sumoylation of Cse4 and do not display psh1Δ GALCSE4 SDL. In summary, we have identified genes that contribute to the mislocalization of overexpressed Cse4 and defined a role for the gene dosage of H4 in facilitating Cse4 sumoylation and mislocalization to noncentromeric regions, leading to CIN when Cse4 is overexpressed.


Asunto(s)
Proteína A Centromérica/genética , Inestabilidad Cromosómica , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Centrómero/metabolismo , Proteína A Centromérica/metabolismo , Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Proteínas de Unión al ADN/metabolismo , Dosificación de Gen , Estudio de Asociación del Genoma Completo , Histonas/metabolismo , Nucleosomas , Proteínas Serina-Treonina Quinasas , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/genética
12.
Mol Biol Cell ; 32(21): ar15, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34432494

RESUMEN

Faithful chromosome segregation maintains chromosomal stability as errors in this process contribute to chromosomal instability (CIN), which has been observed in many diseases including cancer. Epigenetic regulation of kinetochore proteins such as Cse4 (CENP-A in humans) plays a critical role in high-fidelity chromosome segregation. Here we show that Cse4 is a substrate of evolutionarily conserved Cdc7 kinase, and that Cdc7-mediated phosphorylation of Cse4 prevents CIN. We determined that Cdc7 phosphorylates Cse4 in vitro and interacts with Cse4 in vivo in a cell cycle-dependent manner. Cdc7 is required for kinetochore integrity as reduced levels of CEN-associated Cse4, a faster exchange of Cse4 at the metaphase kinetochores, and defects in chromosome segregation, are observed in a cdc7-7 strain. Phosphorylation of Cse4 by Cdc7 is important for cell survival as constitutive association of a kinase-dead variant of Cdc7 (cdc7-kd) with Cse4 at the kinetochore leads to growth defects. Moreover, phospho-deficient mutations of Cse4 for consensus Cdc7 target sites contribute to CIN phenotype. In summary, our results have defined a role for Cdc7-mediated phosphorylation of Cse4 in faithful chromosome segregation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/fisiología , Centrómero/metabolismo , Proteína A Centromérica/metabolismo , Cromatina/metabolismo , Inestabilidad Cromosómica , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/fisiología , Cromosomas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Epigénesis Genética , Histonas/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología
13.
Genetics ; 214(4): 839-854, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32111629

RESUMEN

Centromeric localization of CENP-A (Cse4 in Saccharomyces cerevisiae, CID in flies, CENP-A in humans) is essential for faithful chromosome segregation. Mislocalization of overexpressed CENP-A contributes to aneuploidy in yeast, flies, and humans, and is proposed to promote tumorigenesis in human cancers. Hence, defining molecular mechanisms that promote or prevent mislocalization of CENP-A is an area of active investigation. In budding yeast, evolutionarily conserved histone chaperones Scm3 and chromatin assembly factor-1 (CAF-1) promote localization of Cse4 to centromeric and noncentromeric regions, respectively. Ubiquitin ligases, such as Psh1 and Slx5, and histone chaperones (HIR complex) regulate proteolysis of overexpressed Cse4 and prevent its mislocalization to noncentromeric regions. In this study, we have identified sumoylation sites lysine (K) 215/216 in the C terminus of Cse4, and shown that sumoylation of Cse4 K215/216 facilitates its genome-wide deposition into chromatin when overexpressed. Our results showed reduced levels of sumoylation of mutant Cse4 K215/216R/A [K changed to arginine (R) or alanine (A)] and reduced interaction of mutant Cse4 K215/216R/A with Scm3 and CAF-1 when compared to wild-type Cse4 Consistent with these results, levels of Cse4 K215/216R/A in the chromatin fraction and localization to centromeric and noncentromeric regions were reduced. Furthermore, in contrast to GAL-CSE4, which exhibits Synthetic Dosage Lethality (SDL) in psh1∆, slx5∆, and hir2∆ strains, GAL-cse4K215/216R does not exhibit SDL in these strains. Taken together, our results show that deposition of Cse4 into chromatin is facilitated by its C-terminal sumoylation.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilación , Factor 1 de Ensamblaje de la Cromatina/genética , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Dominios Proteicos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Mutaciones Letales Sintéticas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
14.
G3 (Bethesda) ; 10(6): 2057-2068, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32295767

RESUMEN

The evolutionarily conserved centromeric histone H3 variant (Cse4 in budding yeast, CENP-A in humans) is essential for faithful chromosome segregation. Mislocalization of CENP-A to non-centromeric chromatin contributes to chromosomal instability (CIN) in yeast, fly, and human cells and CENP-A is highly expressed and mislocalized in cancers. Defining mechanisms that prevent mislocalization of CENP-A is an area of active investigation. Ubiquitin-mediated proteolysis of overexpressed Cse4 (GALCSE4) by E3 ubiquitin ligases such as Psh1 prevents mislocalization of Cse4, and psh1Δ strains display synthetic dosage lethality (SDL) with GALCSE4 We previously performed a genome-wide screen and identified five alleles of CDC7 and DBF4 that encode the Dbf4-dependent kinase (DDK) complex, which regulates DNA replication initiation, among the top twelve hits that displayed SDL with GALCSE4 We determined that cdc7-7 strains exhibit defects in ubiquitin-mediated proteolysis of Cse4 and show mislocalization of Cse4 Mutation of MCM5 (mcm5-bob1) bypasses the requirement of Cdc7 for replication initiation and rescues replication defects in a cdc7-7 strain. We determined that mcm5-bob1 does not rescue the SDL and defects in proteolysis of GALCSE4 in a cdc7-7 strain, suggesting a DNA replication-independent role for Cdc7 in Cse4 proteolysis. The SDL phenotype, defects in ubiquitin-mediated proteolysis, and the mislocalization pattern of Cse4 in a cdc7-7psh1Δ strain were similar to that of cdc7-7 and psh1Δ strains, suggesting that Cdc7 regulates Cse4 in a pathway that overlaps with Psh1 Our results define a DNA replication initiation-independent role of DDK as a regulator of Psh1-mediated proteolysis of Cse4 to prevent mislocalization of Cse4.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Centrómero/metabolismo , Proteína A Centromérica , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas Serina-Treonina Quinasas , Proteolisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinación
15.
Genetics ; 179(1): 263-75, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18458100

RESUMEN

Cse4p is an essential histone H3 variant in Saccharomyces cerevisiae that defines centromere identity and is required for proper segregation of chromosomes. In this study, we investigated phenotypic consequences of Cse4p mislocalization and increased dosage of histone H3 and Cse4p, and established a direct link between histone stoichiometry, mislocalization of Cse4p, and chromosome segregation. Overexpression of the stable Cse4p mutant, cse4(K16R), resulted in its mislocalization, increased association with chromatin, and a high rate of chromosome loss, all of which were suppressed by constitutive expression of histone H3 (delta 16H3). We determined that delta 16H3 did not lead to increased chromosome loss; however, increasing the dosage of histone H3 (GALH3) resulted in significant chromosome loss due to reduced levels of centromere (CEN)-associated Cse4p and synthetic dosage lethality (SDL) in kinetochore mutants. These phenotypes were suppressed by GALCSE4. We conclude that the chromosome missegregation of GALcse4(K16R) and GALH3 strains is due to mislocalization and a functionally compromised kinetochore, respectively. Suppression of these phenotypes by histone delta 16H3 and GALCSE4 supports the conclusion that proper stoichiometry affects the localization of histone H3 and Cse4p and is thus essential for accurate chromosome segregation.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/genética , Proteínas de Unión al ADN/genética , Dosificación de Gen/genética , Histonas/metabolismo , Cinetocoros/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Inmunoprecipitación de Cromatina , Histonas/genética
16.
Mol Cell Biol ; 25(23): 10273-85, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16287844

RESUMEN

Aerobic metabolism produces reactive oxygen species, including superoxide anions, which cause DNA damage unless removed by scavengers such as superoxide dismutases. We show that loss of the Cu,Zn-dependent superoxide dismutase, SOD1, or its copper chaperone, LYS7, confers oxygen-dependent sensitivity to replication arrest and DNA damage in Saccharomyces cerevisiae. We also find that sod1Delta strains, and to a lesser extent lys7Delta strains, when arrested with hydroxyurea (HU) show reduced induction of the MEC1 pathway effector Rnr3p and of Hug1p. The HU sensitivity of sod1Delta and lys7Delta strains is suppressed by overexpression of TKL1, a transketolase that generates NADPH, which balances redox in the cell and is required for ribonucleotide reductase activity. Our results suggest that the MEC1 pathway in sod1Delta mutant strains is sensitive to the altered cellular redox state due to increased superoxide anions and establish a new relationship between SOD1, LYS7, and the MEC1-mediated checkpoint response to replication arrest and DNA damage in S. cerevisiae.


Asunto(s)
Daño del ADN/efectos de los fármacos , Hidroxiurea/farmacología , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Medios de Cultivo/química , Replicación del ADN/genética , ADN de Hongos/efectos de los fármacos , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/genética , Péptidos y Proteínas de Señalización Intracelular , Chaperonas Moleculares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Oxígeno/metabolismo , Oxígeno/farmacología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Superóxido Dismutasa/deficiencia , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcetolasa/genética , Transcetolasa/metabolismo
17.
G3 (Bethesda) ; 8(4): 1215-1223, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29432128

RESUMEN

Stringent regulation of cellular levels of evolutionarily conserved centromeric histone H3 variant (CENP-A in humans, CID in flies, Cse4 in yeast) prevents its mislocalization to non-centromeric chromatin. Overexpression and mislocalization of CENP-A has been observed in cancers and leads to aneuploidy in yeast, flies, and human cells. Ubiquitin-mediated proteolysis of Cse4 by E3 ligases such as Psh1 and Sumo-Targeted Ubiquitin Ligase (STUbL) Slx5 prevent mislocalization of Cse4. Previously, we identified Siz1 and Siz2 as the major E3 ligases for sumoylation of Cse4. In this study, we have identified lysine 65 (K65) in Cse4 as a site that regulates sumoylation and ubiquitin-mediated proteolysis of Cse4 by Slx5. Strains expressing cse4 K65R exhibit reduced levels of sumoylated and ubiquitinated Cse4 in vivo Furthermore, co-immunoprecipitation experiments reveal reduced interaction of cse4 K65R with Slx5, leading to increased stability and mislocalization of cse4 K65R under normal physiological conditions. Based on the increased stability of cse4 K65R in psh1∆ strains but not in slx5∆ strains, we conclude that Slx5 targets sumoylated Cse4 K65 for ubiquitination-mediated proteolysis independent of Psh1. In summary, we have identified and characterized the physiological role of Cse4 K65 in sumoylation, ubiquitin-mediated proteolysis, and localization of Cse4 for genome stability.


Asunto(s)
Centrómero/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Proteolisis , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sumoilación , Segregación Cromosómica , Lisina/metabolismo , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica , Transporte de Proteínas , Ubiquitinación
18.
Genetics ; 210(1): 203-218, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30012561

RESUMEN

Centromeric localization of the evolutionarily conserved centromere-specific histone H3 variant CENP-A (Cse4 in yeast) is essential for faithful chromosome segregation. Overexpression and mislocalization of CENP-A lead to chromosome segregation defects in yeast, flies, and human cells. Overexpression of CENP-A has been observed in human cancers; however, the molecular mechanisms preventing CENP-A mislocalization are not fully understood. Here, we used a genome-wide synthetic genetic array (SGA) to identify gene deletions that exhibit synthetic dosage lethality (SDL) when Cse4 is overexpressed. Deletion for genes encoding the replication-independent histone chaperone HIR complex (HIR1, HIR2, HIR3, HPC2) and a Cse4-specific E3 ubiquitin ligase, PSH1, showed highest SDL. We defined a role for Hir2 in proteolysis of Cse4 that prevents mislocalization of Cse4 to noncentromeric regions for genome stability. Hir2 interacts with Cse4 in vivo, and hir2∆ strains exhibit defects in Cse4 proteolysis and stabilization of chromatin-bound Cse4 Mislocalization of Cse4 to noncentromeric regions with a preferential enrichment at promoter regions was observed in hir2∆ strains. We determined that Hir2 facilitates the interaction of Cse4 with Psh1, and that defects in Psh1-mediated proteolysis contribute to increased Cse4 stability and mislocalization of Cse4 in the hir2∆ strain. In summary, our genome-wide screen provides insights into pathways that regulate proteolysis of Cse4 and defines a novel role for the HIR complex in preventing mislocalization of Cse4 by facilitating proteolysis of Cse4, thereby promoting genome stability.


Asunto(s)
Proteína A Centromérica/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Centrómero/metabolismo , Proteína A Centromérica/genética , Cromatina/metabolismo , Segregación Cromosómica , Estudio de Asociación del Genoma Completo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomycetales/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
19.
Mol Biol Cell ; 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26960795

RESUMEN

Centromeric histone H3, CENP-ACse4, is essential for faithful chromosome segregation. Stringent regulation of cellular levels of CENP-ACse4 restricts its localization to centromeres. Mislocalization of CENP-ACse4 is associated with aneuploidy in yeast, flies and tumorigenesis in human cells; thus, defining pathways that regulate CENP-A levels is critical for understanding how mislocalization of CENP-A contributes to aneuploidy in human cancers. Previous work in budding yeast has shown that ubiquitination of overexpressed Cse4 by Psh1, an E3 ligase, partially contributes to proteolysis of Cse4. Here, we provide the first evidence that Cse4 is sumoylated by E3 ligases Siz1 and Siz2 in vivo and in vitro. Ubiquitination of Cse4 by Small Ubiquitin-related Modifier (SUMO)-Targeted Ubiquitin Ligase (STUbL) Slx5 plays a critical role in proteolysis of Cse4 and prevents mislocalization of Cse4 to euchromatin under normal physiological conditions. Accumulation of sumoylated Cse4 species and increased stability of Cse4 in slx5∆ strains suggest that sumoylation precedes ubiquitin-mediated proteolysis of Cse4. Slx5-mediated Cse4 proteolysis is independent of Psh1 since slx5∆ psh1∆ strains exhibit higher levels of Cse4 stability and mislocalization compared to either slx5∆ or psh1∆ strains. Our results demonstrate a role for Slx5 in ubiquitin-mediated proteolysis of Cse4 to prevent its mislocalization and maintain genome stability.

20.
Mol Biol Cell ; 27(14): 2286-300, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27226485

RESUMEN

Sister chromatid cohesion is essential for tension-sensing mechanisms that monitor bipolar attachment of replicated chromatids in metaphase. Cohesion is mediated by the association of cohesins along the length of sister chromatid arms. In contrast, centromeric cohesin generates intrastrand cohesion and sister centromeres, while highly cohesin enriched, are separated by >800 nm at metaphase in yeast. Removal of cohesin is necessary for sister chromatid separation during anaphase, and this is regulated by evolutionarily conserved polo-like kinase (Cdc5 in yeast, Plk1 in humans). Here we address how high levels of cohesins at centromeric chromatin are removed. Cdc5 associates with centromeric chromatin and cohesin-associated regions. Maximum enrichment of Cdc5 in centromeric chromatin occurs during the metaphase-to-anaphase transition and coincides with the removal of chromosome-associated cohesin. Cdc5 interacts with cohesin in vivo, and cohesin is required for association of Cdc5 at centromeric chromatin. Cohesin removal from centromeric chromatin requires Cdc5 but removal at distal chromosomal arm sites does not. Our results define a novel role for Cdc5 in regulating removal of centromeric cohesins and faithful chromosome segregation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Anafase , Centrómero/enzimología , Centrómero/metabolismo , Cromátides/metabolismo , Cromatina/metabolismo , Segregación Cromosómica , Metafase , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Cohesinas , Quinasa Tipo Polo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA