Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Chemistry ; 30(4): e202301846, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37721802

RESUMEN

The tremendous importance of dirhodium paddlewheel complexes for asymmetric catalysis is largely the result of an empirical optimization of the chiral ligand sphere about the bimetallic core. It was only recently that a H(C)Rh triple resonance 103 Rh NMR experiment provided the long-awaited opportunity to examine - with previously inconceivable accuracy - how variation of the ligands impacts on the electronic structure of such catalysts. The recorded effects are dramatic: formal replacement of only one out of eight O-atoms surrounding the metal centers in a dirhodium tetracarboxylate by an N-atom results in a shielding of the corresponding Rh-site of no less than 1000 ppm. The current paper provides the theoretical framework that allows this and related experimental observations made with a set of 19 representative rhodium complexes to be interpreted. In line with symmetry considerations, it is shown that the shielding tensor responds only to the donor ability of the equatorial ligands along the perpendicular principal axis. Axial ligands, in contrast, have no direct effect on shielding but may come into play via the electronic c i s ${cis}$ -effect that they exert onto the neighboring equatorial sites. On top of these fundamental interactions, charge redistribution within the core as well as the electronic t r a n s ${trans}$ -effect of ligands of different donor strengths is reflected in the recorded 103 Rh NMR shifts.

2.
Phys Chem Chem Phys ; 26(21): 15205-15220, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38767596

RESUMEN

An improved version of ORCA's automated generator environment (ORCA-AGE II) is presented. The algorithmic improvements and the move to C++ as the programming language lead to a performance gain of up to two orders of magnitude compared to the previously developed PYTHON toolchain. Additionally, the restructured modular design allows for far more complex code engines to be implemented readily. Importantly, we have realised an extremely tight integration with the ORCA host program. This allows for a workflow in which only the wavefunction Ansatz is part of the source code repository while all actual high-level code is generated automatically, inserted at the appropriate place in the host program before it is compiled and linked together with the hand written code parts. This construction ensures longevity and uniform code quality. Furthermore the new developments allow ORCA-AGE II to generate parallelised production-level code for highly complex theories, such as fully internally contracted multireference coupled-cluster theory (fic-MRCC) with an enormous number of contributing tensor contractions. We also discuss the automated implementation of nuclear gradients for arbitrary theories. All these improvements enable the implementation of theories that are too complex for the human mind and also reduce development times by orders of magnitude. We hope that this work enables researchers to concentrate on the intellectual content of the theories they develop rather than be concerned with technical details of the implementation.

3.
J Am Chem Soc ; 145(51): 27922-27932, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38086018

RESUMEN

The research presented herein explores a cobalt-based catalytic system, distinctively featuring a cooperative boron-centric element within its intricate ligand architecture. This system is strategically engineered to enable the integration of a singular carbon atom into aldehydes, a process culminating in the production of (Z)-silyl enol ethers. Beyond offering an efficient one-pot synthesis route, this method adeptly overcomes challenges inherent to conventional techniques, such as the need for large amounts of additives, restrictive functional group tolerance, and extreme reaction temperatures. Initial mechanistic studies suggest the potential role of a cobalt-carbene complex as a catalytically significant species and underscore the importance of the borane segment. Collectively, these observations highlight the potential of this system in advancing complex bond activation pursuits.

4.
Angew Chem Int Ed Engl ; 62(23): e202219127, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36856294

RESUMEN

The selective activation of C-F bonds under mild reaction conditions remains an ongoing challenge of bond activation. Here, we present a cooperative [Rh/P(O)nBu2 ] template for catalytic hydrodefluorination (HDF) of perfluoroarenes. In addition to substrates presenting electron-withdrawing functional groups, the system showed an exceedingly rare tolerance for electron-donating functionalities and heterocycles. The high chemoselectivity of the catalyst and its readiness to be deployed at a preparative scale illustrate its practicality. Empirical mechanistic studies and a density functional theory (DFT) study have identified a rhodium(I) dihydride complex as a catalytically relevant species and the determining role of phosphine oxide as a cooperative fragment. Altogether, we demonstrate that molecular templates based on these design elements can be assembled to create catalysts with increased reactivity for challenging bond activations.

5.
Angew Chem Int Ed Engl ; 62(49): e202313578, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37769154

RESUMEN

Organobismuth-catalyzed transfer hydrogenation has recently been disclosed as an example of low-valent Bi redox catalysis. However, its mechanistic details have remained speculative. Herein, we report experimental and computational studies that provide mechanistic insights into a Bi-catalyzed transfer hydrogenation of azoarenes using p-trifluoromethylphenol (4) and pinacolborane (5) as hydrogen sources. A kinetic analysis elucidated the rate orders in all components in the catalytic reaction and determined that 1 a (2,6-bis[N-(tert-butyl)iminomethyl]phenylbismuth) is the resting state. In the transfer hydrogenation of azobenzene using 1 a and 4, an equilibrium between 1 a and 1 a ⋅ [OAr]2 (Ar=p-CF3 -C6 H4 ) is observed, and its thermodynamic parameters are established through variable-temperature NMR studies. Additionally, pKa -gated reactivity is observed, validating the proton-coupled nature of the transformation. The ensuing 1 a ⋅ [OAr]2 is crystallographically characterized, and shown to be rapidly reduced to 1 a in the presence of 5. DFT calculations indicate a rate-limiting transition state in which the initial N-H bond is formed via concerted proton transfer upon nucleophilic addition of 1 a to a hydrogen-bonded adduct of azobenzene and 4. These studies guided the discovery of a second-generation Bi catalyst, the rate-limiting transition state of which is lower in energy, leading to catalytic transfer hydrogenation at lower catalyst loadings and at cryogenic temperature.

6.
J Am Chem Soc ; 144(36): 16535-16544, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36053726

RESUMEN

The development of unconventional strategies for the activation of ammonia (NH3) and water (H2O) is of capital importance for the advancement of sustainable chemical strategies. Herein we provide the synthesis and characterization of a radical equilibrium complex based on bismuth featuring an extremely weak Bi-O bond, which permits the in situ generation of reactive Bi(II) species. The ensuing organobismuth(II) engages with various amines and alcohols and exerts an unprecedented effect onto the X-H bond, leading to low BDFEX-H. As a result, radical activation of various N-H and O-H bonds─including ammonia and water─occurs in seconds at room temperature, delivering well-defined Bi(III)-amido and -alkoxy complexes. Moreover, we demonstrate that the resulting Bi(III)-N complexes engage in a unique reactivity pattern with the triad of H+, H-, and H• sources, thus providing alternative pathways for main group chemistry.


Asunto(s)
Amoníaco , Bismuto , Aminas , Amoníaco/química , Bismuto/química , Agua/química
7.
J Am Chem Soc ; 143(32): 12473-12479, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34351134

RESUMEN

A H(C)Rh triple resonance NMR experiment makes the rapid detection of 103Rh chemical shifts possible, which were previously beyond reach. It served to analyze a series of dirhodium and bismuth-rhodium paddlewheel complexes of the utmost importance for metal-carbene chemistry. The excellent match between the experimental and computed 103Rh shifts in combination with a detailed analysis of the pertinent shielding tensors forms a sound basis for a qualitative and quantitative interpretation of these otherwise (basically) inaccessible data. The observed trends clearly reflect the influence exerted by the equatorial ligands (carboxylate versus carboxamidate), the axial ligands (solvents), and the internal "metalloligand" (Rh versus Bi) on the electronic estate of the reactive Rh(II) center.

8.
Chemistry ; 27(58): 14520-14526, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34342068

RESUMEN

The noncovalent interactions of heavy pnictogens with π-arenes play a fundamental role in fields like crystal engineering or catalysis. The strength of such bonds is based on an interplay between dispersion and donor/acceptor interactions, and is generally attributed to the presence of π-arenes. Computational studies of the interaction between the heavy pnictogens As, Sb and Bi and cyclohexane, in comparison with previous studies on the interaction between heavy pnictogens and benzene, show that this concept probably has to be revised. A thorough analysis of all the different energetic components that play a role in these systems, carried out with state-of-the-art computational methods, sheds light on how they influence one another and the effect that their interplay has on the overall system. Furthermore, the analysis of such interactions leads us to the unexpected finding that the presence of the pnictogen compounds strongly affects the conformational equilibrium of cyclohexane, reversing the relative stability of the chair and boat-twist conformers, and thus suggesting a possible application of tuneable dispersion energy donors to stabilise the desired conformation.


Asunto(s)
Benceno , Teoría Cuántica , Conformación Molecular
9.
J Chem Phys ; 154(16): 164110, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33940835

RESUMEN

We present a derivation and efficient implementation of the formally complete analytic second derivatives for the domain-based local pair natural orbital second order Møller-Plesset perturbation theory (MP2) method, applicable to electric or magnetic field-response properties but not yet to harmonic frequencies. We also discuss the occurrence and avoidance of numerical instability issues related to singular linear equation systems and near linear dependences in the projected atomic orbital domains. A series of benchmark calculations on medium-sized systems is performed to assess the effect of the local approximation on calculated nuclear magnetic resonance shieldings and the static dipole polarizabilities. Relative deviations from the resolution of the identity-based MP2 (RI-MP2) reference for both properties are below 0.5% with the default truncation thresholds. For large systems, our implementation achieves quadratic effective scaling, is more efficient than RI-MP2 starting at 280 correlated electrons, and is never more than 5-20 times slower than the equivalent Hartree-Fock property calculation. The largest calculation performed here was on the vancomycin molecule with 176 atoms, 542 correlated electrons, and 4700 basis functions and took 3.3 days on 12 central processing unit cores.

10.
Phys Chem Chem Phys ; 22(18): 10189-10211, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32347835

RESUMEN

A series of 2-biphenyl bismuth(iii) compounds of the type (2-PhC6H4)3-nBiXn [n = 0 (1); n = 1, X = Cl (2), Br (3), I (4), Me (5); n = 2, X = Cl (6), Br (7), I (8)] has been synthesized and analyzed with focus on intramolecular London dispersion interactions. The library of the compounds was set up in order to investigate the Biπ arene interaction by systematic variation of X. The structural analysis in the solid state revealed that the triarylbismuth(iii) compound 1 shows an encapsulation of the metal atom but the distances between the bismuth atom and the phenyl centroids amount to values close to or larger than 4.0 Å, which is considered to be a rather week dispersion interaction. In the case of monomeric diorganobismuth(iii) compounds 2-5 the moderate crowding effectively hinders the formation of intermolecular donor-acceptor interactions, but allows for intramolecular dispersion-type interactions with the 2-biphenyl ligand. In contrast, the structures of the monoorganobismuth compounds 6-8 show the formation of Bi-XBi donor-acceptor bonds leading to the formation of 1D ribbons in the solid state. These coordination bonds are accompanied by intermolecular dispersion interactions with BiPhcentroid distances < 4.0 Å. In solution the diorganobismuth(iii) halides 2-4 show a broadening of their NMR signals (H-8, H-8' and H-9, H-9' protons of the 2-biphenyl ligand), which is a result of dynamic processes including ligand rotation. For further elucidation of these processes compounds 2, 4 and 7 were studied by temperature-dependent NMR spectroscopy. Electronic structure calculations at the density functional theory and DLPNO-coupled cluster level of theory were applied to investigate and quantify the intramolecular London dispersion interactions, in an attempt to distinguish between basic intramolecular interactions and packing effects and to shed light on the dynamic behavior in solution.

11.
J Chem Phys ; 152(16): 164303, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32357787

RESUMEN

The site-specific first microsolvation step of furan and some of its derivatives with methanol is explored to benchmark the ability of quantum-chemical methods to describe the structure, energetics, and vibrational spectrum at low temperature. Infrared and microwave spectra in supersonic jet expansions are used to quantify the docking preference and some relevant quantum states of the model complexes. Microwave spectroscopy strictly rules out in-plane docking of methanol as opposed to the top coordination of the aromatic ring. Contrasting comparison strategies, which emphasize either the experimental or the theoretical input, are explored. Within the harmonic approximation, only a few composite computational approaches are able to achieve a satisfactory performance. Deuteration experiments suggest that the harmonic treatment itself is largely justified for the zero-point energy, likely and by design due to the systematic cancellation of important anharmonic contributions between the docking variants. Therefore, discrepancies between experiment and theory for the isomer abundance are tentatively assigned to electronic structure deficiencies, but uncertainties remain on the nuclear dynamics side. Attempts to include anharmonic contributions indicate that for systems of this size, a uniform treatment of anharmonicity with systematically improved performance is not yet in sight.

12.
Angew Chem Int Ed Engl ; 59(35): 15008-15013, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32427395

RESUMEN

Buckyballs (fullerenes) were first reported over 30 years ago, but still little is known regarding their natural occurrence, since they have so far only been found at sites of high-energy incidents, such as lightning strikes or meteor impacts, but have not been reported in low-energy materials like fossil fuels. Using ultrahigh-resolution mass spectrometry, a wide range of fullerenes from C30 to C114 was detected in the asphaltene fraction of a heavy crude oil, together with their building blocks of C10n H10 stoichiometry. High-level DLPNO-CCSD(T) calculations corroborate their stability as spherical and hemispherical species. Interestingly, the maximum intensity of the fullerenes was found at C40 instead of the major fullerene C60 . Hence, experimental evidence supported by calculations show the existence of not only buckyballs but also buckybowls as 3-dimensional polyaromatic compounds in fossil materials.

13.
Angew Chem Int Ed Engl ; 59(14): 5788-5796, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31850662

RESUMEN

Direct selective oxidation of hydrocarbons to oxygenates by O2 is challenging. Catalysts are limited by the low activity and narrow application scope, and the main focus is on active C-H bonds at benzylic positions. In this work, stable, lead-free, Cs3 Bi2 Br9 halide perovskites are integrated within the pore channels of mesoporous SBA-15 silica and demonstrate their photocatalytic potentials for C-H bond activation. The composite photocatalysts can effectively oxidize hydrocarbons (C5 to C16 including aromatic and aliphatic alkanes) with a conversion rate up to 32900 µmol gcat -1 h-1 and excellent selectivity (>99 %) towards aldehydes and ketones under visible-light irradiation. Isotopic labeling, in situ spectroscopic studies, and DFT calculations reveal that well-dispersed small perovskite nanoparticles (2-5 nm) possess enhanced electron-hole separation and a close contact with hydrocarbons that facilitates C(sp3 )-H bond activation by photoinduced charges.

14.
Chemphyschem ; 20(19): 2539-2552, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31369692

RESUMEN

High-level ab initio calculations using the DLPNO-CCSD(T) method in conjunction with the local energy decomposition (LED) were performed to investigate the nature of the intermolecular interaction in bismuth trichloride adducts with π arene systems. Special emphasis was put on the effect of substituents in the aromatic ring. For this purpose, benzene derivatives with one or three substituents (R=NO2 , CF3 , OCHO, OH, and NH2 ) were chosen and their influence on donor-acceptor interaction as well as on the overall interaction strength was examined. Local energy decomposition was performed to gain deeper insight into the composition of the interaction. Additionally, the study was extended to the intermolecular adducts of arsenic and antimony trichloride with benzene derivatives having one substituent (R=NO2 and NH2 ) in order to rationalize trends in the periodic table. The analysis of natural charges and frontier molecular orbitals shows that donor-acceptor interactions are of π→σ* type and that their strength correlates with charge transfer and orbital energy differences. An analysis of different bonding motifs (Bi⋅⋅⋅π arene, Bi⋅⋅⋅R, and Cl⋅⋅⋅π arene) shows that if dispersion and donor-acceptor interaction coincide as the donor highest occupied molecular orbital (HOMO) of the arene is delocalized over the π system, the M⋅⋅⋅π arene motif is preferred. If the donor HOMO is localized on the substituent, R⋅⋅⋅π arene bonding motifs are preferred. The Cl⋅⋅⋅π arene bonding motif is the least favorable with the lowest overall interaction energy.

15.
J Chem Phys ; 150(4): 041705, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30709289

RESUMEN

High Resolution Transmission Electron Microscopy (HR TEM) is used to identify the size, shape, and interface structure of platinum nanoparticles and carbon support of a fuel cell catalyst. Using these insights, models accessible to quantum chemical methods are designed in order to rationalize the observed features. Thus, basal plane and prism face models of the carbon black material are considered, interacting with Pt clusters of sizes up to 1 nm. Particular attention is paid to the electronic structure of the carbon support, namely, the radical character of graphene zig-zag edges. The results show that a stronger interaction is found when the nanoparticle is at the zig-zag edge of a basal plane due to the combination of dispersion interaction with the support structure and covalent interaction with carbon atoms at the edge. In this case, a distortion of both the Pt nanoparticle and the carbon support is observed, which corresponds to the observations from the HR TEM investigation. Furthermore, the analysis of the charge transfer upon interaction and the influence of the potential on the charge states and structure is carried out on our model systems. In all cases, a clear charge transfer is observed from the carbon support to the Pt nanoparticle. Finally, we show that changing the potential not only can change the charge state of the system but can also affect the nature of the interaction between Pt nanoparticles and carbon supports.

16.
Chemistry ; 24(40): 10238-10245, 2018 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-29718544

RESUMEN

This work reports high-level ab initio calculations and a detailed analysis on the nature of intermolecular interactions of heavy main-group element compounds and π systems. For this purpose we have chosen a set of benchmark molecules of the form MR3 , in which M=As, Sb, or Bi, and R=CH3 , OCH3 , or Cl. Several methods for the description of weak intermolecular interactions are benchmarked including DFT-D, DFT-SAPT, MP2, and high-level coupled cluster methods in the DLPNO-CCSD(T) approximation. Using local energy decomposition (LED) and an analysis of the electron density, details of the nature of this interaction are unraveled. The results yield insight into the nature of dispersion and donor-acceptor interactions in this type of system, including systematic trends in the periodic table, and also provide a benchmark for dispersion interactions in heavy main-group element compounds.

17.
Chemistry ; 24(47): 12298-12317, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-29575186

RESUMEN

Nitrogen-containing hydrothermal carbon (N-HTC) materials of spherical particle morphology were prepared by means of hydrothermal synthesis with glucose and urotropine as precursors. The molar ratio of glucose to urotropine has been varied to achieve a continuous increase in nitrogen content. By raising the ratio of urotropine to glucose, a maximal nitrogen fraction of about 19 wt % could be obtained. Decomposition products of both glucose and urotropine react with each other; this opens up a variety of possible reaction pathways. The pH has a pronounced effect on the reaction pathway of the corresponding reaction steps. For the first time, a comprehensive analytical investigation, comprising a multitude of analytical tools and instruments, of a series of nitrogen-containing HTC materials was applied. Functional groups and structural motifs identified were analyzed by means of FTIR spectroscopy, thermogravimetric MS, and solid-state NMR spectroscopy. Information on reaction mechanisms and structural details were obtained by electronic structure calculations that were compared with vibrational spectra of polyfuran or polypyrrole-like groups, which represent structural motifs occurring in the present samples.

18.
J Chem Phys ; 148(1): 014301, 2018 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-29306273

RESUMEN

Herein we present the results of a blind challenge to quantum chemical methods in the calculation of dimerization preferences in the low temperature gas phase. The target of study was the first step of the microsolvation of furan, 2-methylfuran and 2,5-dimethylfuran with methanol. The dimers were investigated through IR spectroscopy of a supersonic jet expansion. From the measured bands, it was possible to identify a persistent hydrogen bonding OH-O motif in the predominant species. From the presence of another band, which can be attributed to an OH-π interaction, we were able to assert that the energy gap between the two types of dimers should be less than or close to 1 kJ/mol across the series. These values served as a first evaluation ruler for the 12 entries featured in the challenge. A tentative stricter evaluation of the challenge results is also carried out, combining theoretical and experimental results in order to define a smaller error bar. The process was carried out in a double-blind fashion, with both theory and experimental groups unaware of the results on the other side, with the exception of the 2,5-dimethylfuran system which was featured in an earlier publication.

19.
Beilstein J Org Chem ; 14: 2125-2145, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30202466

RESUMEN

The dispersion type Bi···π arene interaction is one of the important structural features in the assembly process of arylbismuth compounds. Several triarylbismuth compounds and polymorphs are discussed and compared based on the analysis of single crystal X-ray diffraction data and computational studies. First, the crystal structures of polymorphs of Ph3Bi (1) are described emphasizing on the description of London dispersion type bismuth···π arene interactions and other van der Waals interactions in the solid state and the effect of it on polymorphism. For comparison we have chosen the substituted arylbismuth compounds (C6H4-CH═CH2-4)3Bi (2), (C6H4-OMe-4)3Bi (3), (C6H3-t-Bu2-3,5)3Bi (4) and (C6H3-t-Bu2-3,5)2BiCl (5). The structural analyses revealed that only two of them show London dispersion type bismuth···π arene interactions. One of them is the styryl derivative 2, for which two polymorphs were isolated. Polymorph 2a crystallizes in the orthorhombic space group P212121, while polymorph 2b exhibits the monoclinic space group P21/c. The general structure of 2a is similar to the monoclinic C2/c modification of Ph3Bi (1a), which leads to the formation of zig-zag Bi-arenecentroid ribbons formed as a result of bismuth···π arene interactions and π···π intermolecular contacts. In the crystal structures of the polymorph 2b as well as for 4 bismuth···π arene interactions are not observed, but both compounds revealed C-HPh···π intermolecular contacts, as likewise observed in all of the three described polymorphs of Ph3Bi. For compound 3 intermolecular contacts as a result of coordination of the methoxy group to neighboring bismuth atoms are observed overruling Bi···π arene contacts. Compound 5 shows a combination of donor acceptor Bi···Cl and Bi···π arene interactions, resulting in an intermolecular pincer-type coordination at the bismuth atom. A detailed analysis of three polymorphs of Ph3Bi (1), which were chosen as model systems, at the DFT-D level of theory supported by DLPNO-CCSD(T) calculations reveals how van der Waals interactions between different structural features balance in order to stabilize molecular arrangements present in the crystal structure. Furthermore, the computational results allow to group this class of compounds into the range of heavy main group element compounds which have been characterized as dispersion energy donors in previous work.

20.
J Comput Chem ; 38(21): 1853-1868, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28608423

RESUMEN

In this work, the automated generator environment for ORCA (ORCA-AGE) is described. It is a powerful toolchain for the automatic implementation of wavefunction-based quantum chemical methods. ORCA-AGE consists of three main modules: (1) generation of "raw" equations from a second quantized Ansatz for the wavefunction, (2) factorization and optimization of equations, and (3) generation of actual computer code. We generate code for the ORCA package, making use of the powerful functionality for wavefunction-based correlation calculations that is already present in the code. The equation generation makes use of the most elementary commutation relations and hence is extremely general. Consequently, code can be generated for single reference as well as multireference approaches and spin-independent as well as spin-dependent operators. The performance of the generated code is demonstrated through comparison with efficient hand-optimized code for some well-understood standard configuration interaction and coupled cluster methods. In general, the speed of the generated code is no more than 30% slower than the hand-optimized code, thus allowing for routine application of canonical ab initio methods to molecules with about 500-1000 basis functions. Using the toolchain, complicated methods, especially those surpassing human ability for handling complexity, can be efficiently and reliably implemented in very short times. This enables the developer to shift the attention from debugging code to the physical content of the chosen wavefunction Ansatz. Automatic code generation also has the desirable property that any improvement in the toolchain immediately applies to all generated code. © 2017 Wiley Periodicals, Inc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA