RESUMEN
BACKGROUND: Widespread use of silver in its different forms raises concerns about potential adverse effects after ingestion, the main exposure route for humans. The aim of this study was to investigate in CD-1 (ICR) male mice the tissue distribution and in vivo effects of 4-week oral exposure to 0.25 and 1 mg Ag/kg bw 10 nm citrate coated silver nanoparticles (AgNPs) and 1 mg Ag/kg bw silver acetate (AgAc) at the end of treatment (EoT) and after 4 weeks of recovery. RESULTS: There were no treatment-related clinical signs and mortality, and no significant effects on body and organ weights at the EoT and after recovery. Treatment-related changes in hematology and clinical chemistry were found after recovery, the most relevant being a dose-dependent lymphopenia and increased triglycerides in AgNP-treated mice, and increased levels of urea in all treated groups, associated with decreased albumin only in AgAc-treated mice. At the EoT the highest silver concentration determined by Triple Quadrupole ICP-MS analysis was found in the brain, followed by testis, liver, and spleen; much lower concentrations were present in the small intestine and kidney. Tissue silver concentrations were slightly higher after exposure to AgAc than AgNPs and dose dependent for AgNPs. After recovery silver was still present in the brain and testis, highlighting slow elimination. No histopathological changes and absence of silver staining by autometallography were observed in the organs of treated mice. At the EoT GFAP (astrocytes) immunoreactivity was significantly increased in the hippocampus of AgNP-treated mice in a dose-dependent manner and Iba1 (microglial cells) immunoreactivity was significantly increased in the cortex of 1 mg/kg bw AgNP-treated mice. After recovery, a significant reduction of Iba1 was observed in the cortex of all treated groups. TEM analysis of the hippocampus revealed splitting of basement membrane of the capillaries and swelling of astrocytic perivascular end-feet in 1 mg/kg bw AgNP- and AgAc-treated mice at the EoT. CONCLUSIONS: Our study revealed accumulation and slow clearance of silver in the brain after oral administration of 10 nm AgNPs and AgAc at low doses in mice, associated with effects on glial cells and ultrastructural alterations of the Blood-Brain Barrier.
Asunto(s)
Nanopartículas del Metal/toxicidad , Plata/toxicidad , Administración Oral , Animales , Encéfalo , Masculino , Ratones , Ratones Endogámicos ICR , Distribución TisularRESUMEN
Titanium dioxide is a white colourant authorised as food additive E 171 in the EU, where it is used in a range of alimentary products. As these materials may contain a fraction of particulates with sizes below 100 nm and current EU regulation requires specific labelling of food ingredient to indicate the presence of engineered nanomaterials there is now a need for standardised and validated methods to appropriately size and quantify (nano)particles in food matrices. A single-particle inductively coupled plasma mass spectrometry (spICP-MS) screening method for the determination of the size distribution and concentration of titanium dioxide particles in sugar-coated confectionery and pristine food-grade titanium dioxide was developed. Special emphasis was placed on the sample preparation procedure, crucial to reproducibly disperse the particles before analysis. The transferability of this method was tested in an interlaboratory comparison study among seven experienced European food control and food research laboratories equipped with various ICP-MS instruments and using different software packages. The assessed measurands included the particle mean diameter, the most frequent diameter, the percentage of particles (in number) with a diameter below 100 nm, the particles' number concentration and a number of cumulative particle size distribution parameters (D0, D10, D50, D99.5, D99.8 and D100). The evaluated method's performance characteristics were, the within-laboratory precision, expressed as the relative repeatability standard deviation (RSDr), and the between-laboratory precision, expressed as the relative reproducibility standard deviation (RSDR). Transmission electron microscopy (TEM) was used as a confirmatory technique and served as the basis for bias estimation. The optimisation of the sample preparation step showed that when this protocol was applied to the relatively simple sample food matrices used in this study, bath sonication turned out to be sufficient to reach the highest, achievable degree of dispersed constituent particles. For the pristine material, probe sonication was required. Repeatability and reproducibility were below 10% and 25% respectively for most measurands except for the lower (D0) and the upper (D100) bound of the particle size distribution and the particle number concentration. The broader distribution of the lower and the upper bounds could be attributed to instrument-specific settings/setups (e.g. the timing parameters, the transport efficiency, type of mass-spectrometer) and software-specific data treatment algorithms. Differences in the upper bound were identified as being due to the non-harmonised application of the upper counting limit. Reporting D99.5 or D99.8 instead of the effectively largest particle diameter (D100) excluded isolated large particles and considerably improved the reproducibility. The particle number-concentration was found to be influenced by small differences in the sample preparation procedure. The comparison of these results with those obtained using electron microscopy showed that the mean and median particle diameter was, in all cases, higher when using spICP-MS. The main reason for this was the higher size detection limit for spICP-MS plus the fact that some of the analysed particles remained agglomerated/aggregated after sonication. Single particle ICP-MS is a powerful screening technique, which in many cases provides sufficient evidence to confirm the need to label a food product as containing (engineered) titanium dioxide nanomaterial according to the current EU regulatory requirements. The overall positive outcome of the method performance evaluation and the current lack of alternative standardised procedures, would indicate this method as being a promising candidate for a full validation study.
RESUMEN
BACKGROUND: Silver nanoparticles (AgNPs) are an important class of nanomaterials used as antimicrobial agents for a wide range of medical and industrial applications. However toxicity of AgNPs and impact of their physicochemical characteristics in in vivo models still need to be comprehensively characterized. The aim of this study was to investigate the effect of size and coating on tissue distribution and toxicity of AgNPs after intravenous administration in mice, and compare the results with those obtained after silver acetate administration. METHODS: Male CD-1(ICR) mice were intravenously injected with AgNPs of different sizes (10 nm, 40 nm, 100 nm), citrate-or polyvinylpyrrolidone-coated, at a single dose of 10 mg/kg bw. An equivalent dose of silver ions was administered as silver acetate. Mice were euthanized 24 h after the treatment, and silver quantification by ICP-MS and histopathology were performed on spleen, liver, lungs, kidneys, brain, and blood. RESULTS: For all particle sizes, regardless of their coating, the highest silver concentrations were found in the spleen and liver, followed by lung, kidney, and brain. Silver concentrations were significantly higher in the spleen, lung, kidney, brain, and blood of mice treated with 10 nm AgNPs than those treated with larger particles. Relevant toxic effects (midzonal hepatocellular necrosis, gall bladder hemorrhage) were found in mice treated with 10 nm AgNPs, while in mice treated with 40 nm and 100 nm AgNPs lesions were milder or negligible, respectively. In mice treated with silver acetate, silver concentrations were significantly lower in the spleen and lung, and higher in the kidney than in mice treated with 10 nm AgNPs, and a different target organ of toxicity was identified (kidney). CONCLUSIONS: Administration of the smallest (10 nm) nanoparticles resulted in enhanced silver tissue distribution and overt hepatobiliary toxicity compared to larger ones (40 and 100 nm), while coating had no relevant impact. Distinct patterns of tissue distribution and toxicity were observed after silver acetate administration. It is concluded that if AgNPs become systemically available, they behave differently from ionic silver, exerting distinct and size-dependent effects, strictly related to the nanoparticulate form.
Asunto(s)
Nanopartículas , Plata/farmacocinética , Plata/toxicidad , Acetatos/administración & dosificación , Acetatos/farmacocinética , Acetatos/toxicidad , Animales , Encéfalo/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Ácido Cítrico/química , Enfermedades de la Vesícula Biliar/inducido químicamente , Enfermedades de la Vesícula Biliar/patología , Hemorragia/inducido químicamente , Hemorragia/patología , Inyecciones Intravenosas , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Pulmón/metabolismo , Masculino , Ratones Endogámicos ICR , Necrosis , Tamaño de la Partícula , Povidona/química , Medición de Riesgo , Plata/administración & dosificación , Plata/sangre , Plata/química , Compuestos de Plata/administración & dosificación , Compuestos de Plata/farmacocinética , Compuestos de Plata/toxicidad , Bazo/metabolismo , Distribución TisularRESUMEN
A new method for rapid determination of the content of selective androgenic receptor modulators (SARMs) andarine, cardarine, ligandrol, ostarine and S-23 in capsules by 1H- and 19F-high resolution nuclear magnetic resonance spectroscopy was described and validated. Specificity, linearity, accuracy, precision, detection and quantification limits were considered as validation parameters. Full 1H-, 13C- and 19F-NMR structural assignment of the SARMs is provided as a tool for self-standing identification without a reference standard. Amounts of 7-15 mg of SARMs/capsule were detected in different products with an intermediate precision of 0.8-1.7% in 4 to 20 minutes of analysis time. The validation results and rapidity of analysis confirm the applicability of the method for large-scale screening. The statistical analysis of the results from 19F- and 1H-quantitative NMR showed that both approaches were equally effective, thus expanding the potential use of the methodology to non-fluorinated SARMs. At present, no SARM has been approved for human consumption; however, SARMs are actually used by bodybuilders and recreational athletes, who purchase them even though the risk-benefit ratio of these molecules has not been definitively established.
Asunto(s)
Anabolizantes , Receptores Androgénicos , Humanos , Andrógenos/química , Antagonistas de Andrógenos , Espectroscopía de Resonancia Magnética , Anabolizantes/químicaRESUMEN
Background: Selective androgen receptor modulators (SARMs) are small synthetic drug molecules that are still not approved as medicine in Europe or the United States but are sold on illegal websites to improve sport performance, particularly bodybuilding. Aim: To address the quality issues of illegal SARM products and their increasing diffusion in Italy with their potential health risks for consumers. Methods: Web-based tools were used to investigate retail websites, trending searches, and information exchange via social media. Thirteen SARM products, purchased on retail websites accessible from Italy, were subject to visual inspection and chemical analysis by mass spectrometry and quantitative nuclear magnetic resonance. Outcomes: The primary outcome was demonstration of additional health risks due to the illicit presence of other active ingredients, contamination, and misdosage in SARM products sold on the internet. The secondary outcome was to show the increasing trend of interest in Italy for these products. Results: Most websites reported misleading information; specifically, the statement "for research only" was reported notwithstanding indications on dosage and training phases. The trending search showed that interest toward SARMs increased in Italy in the last years. The use of these products is clearly encouraged by the emerging phenomenon of "broscience" as revealed in socials. Visual inspection evidenced nonconform labeling. Qualitative analysis confirmed the presence of the stated SARM in about 70% of samples. In 23% of samples, the expected SARM was not detected but a different one instead, and in 1 sample, no SARMs were detected. Other undeclared pharmaceutical substances (tamoxifen, clomifene, testosterone, epimethandienone, tadalafil) were measured in 30% of samples. The copresence of >1 active substance was observed in >60% of samples. Quantitative nuclear magnetic resonance data showed nonuniform content ranging from 30% to 90% of the label claim. Clinical Implications: The use of SARMs, in the presence of unexpected life-threatening reactions in persons using the products to increase sport performance, should be assessed. Strengths and Limitations: This investigation involved an integrated approach to study SARM products and related sociologic aspects. The main shortcomings are the limited number of samples and retail websites in the clear web investigated. Conclusion: SARMs sold online as food supplement-like products represent a health hazard due to the presence of unapproved and undeclared active substances. The presence of contaminants clearly indicates the absence of good manufacturing practices in the production, which increases the health risks.
RESUMEN
In the present study, we addressed the knowledge gaps regarding the agglomeration behavior and fate of food-grade titanium dioxide (E 171) in human gastrointestinal digestion (GID). After thorough multi-technique physicochemical characterization including TEM, single-particle ICP-MS (spICP-MS), CLS, VSSA determination and ELS, the GI fate of E 171 was studied by applying the in vitro GID approach established for the regulatory risk assessment of nanomaterials in Europe, using a standardized international protocol. GI fate was investigated in fasted conditions, relevant to E 171 use in food supplements and medicines, and in fed conditions, with both a model food and E 171-containing food samples. TiO2 constituent particles were resistant to GI dissolution, and thus, their stability in lysosomal fluid was investigated. The biopersistence of the material in lysosomal fluid highlighted its potential for bioaccumulation. For characterizing the agglomeration degree in the small intestinal phase, spICP-MS represented an ideal analytical tool to overcome the limitations of earlier studies. We demonstrated that, after simulated GID, in the small intestine, E 171 (at concentrations reflecting human exposure) is present with a dispersion degree similar to that obtained when dispersing the material in water by means of high-energy sonication (i.e., ≥70% of particles <250 nm).
RESUMEN
INTRODUCTION: A case study is reported on anti-motion sickness transdermal patches sold in the Internet, claiming to contain only natural ingredients but, actually, containing undeclared medicinal active substances. The visual inspection of the samples evidenced many inconsistencies in secondary and primary packaging, missing of various legal information and a non-compliant "CE" mark. METHODS: The qualitative analysis was performed by liquid chromatography - high resolution mass spectrometry and the quantitative by liquid chromatography with diode array detector. RESULTS: The analyses evidenced the presence of the antihistaminic drug Diphenhydramine and of other active substances (Capsaicin, a transdermal absorption enhancer, and Diclofenac in traces, probably a contaminant from other productions of the same plant). Moreover, the presence of several trace elements, including those potentially toxic to humans, was assessed by ICP-MS analysis. CONCLUSIONS: The case discussed is a new case of "medicines in disguise" never reported in literature, and shows the presence of tangible risks for public health.
Asunto(s)
Preparaciones Farmacéuticas , HumanosRESUMEN
Research in both animals and humans shows that some nutrients are important in pregnancy and during the first years of life to support brain and cognitive development. Our aim was to evaluate the role of selenium (Se) in supporting brain and behavioral plasticity and maturation. Pregnant and lactating female rats and their offspring up to postnatal day 40 were fed isocaloric diets differing in Se content-i.e., optimal, sub-optimal, and deficient-and neurodevelopmental, neuroinflammatory, and anti-oxidant markers were analyzed. We observed early adverse behavioral changes in juvenile rats only in sub-optimal offspring. In addition, sub-optimal, more than deficient supply, reduced basal glial reactivity in sex dimorphic and brain-area specific fashion. In female offspring, deficient and sub-optimal diets reduced the antioxidant Glutathione peroxidase (GPx) activity in the cortex and in the liver, the latter being the key organ regulating Se metabolism and homeostasis. The finding that the Se sub-optimal was more detrimental than Se deficient diet may suggest that maternal Se deficient diet, leading to a lower Se supply at earlier stages of fetal development, stimulated homeostatic mechanisms in the offspring that were not initiated by sub-optimal Se. Our observations demonstrate that even moderate Se deficiency during early life negatively may affect, in a sex-specific manner, optimal brain development.
Asunto(s)
Selenio , Animales , Antioxidantes/farmacología , Dieta , Femenino , Glutatión Peroxidasa/metabolismo , Humanos , Lactancia , Hígado/metabolismo , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Embarazo , RatasRESUMEN
Dietary exposure of the Italian population to nickel has been assessed in the national Total Diet Study (TDS). Occurrence data were combined with national individual consumption data to estimate mean and high level dietary exposure of population subgroups according to age and gender, both at the national level and for the four main geographical areas of Italy. The mean chronic dietary exposure of infants and toddlers, children, adolescents, adults, and the elderly were 4.00, 4.57, 2.57, 1.55, and 1.47 µg/kg bw per day, respectively. These intakes lie in the intermediate range of exposure estimates from TDS carried out in other countries. Main contributors to the total nickel exposure for children and adolescents were 'sweet products' and 'cereals and cereal products'. In adults and the elderly nearly 30% of the exposure was associated to the consumption of 'cereals and cereal products'. Mean and 95th percentile chronic dietary exposure was below the TDI in all age groups. For the risk characterisation of acute oral exposure, exposure data for consumers only in the adult population were compared with the reference point for systemic contact dermatitis. Consumption of 'cocoa', 'chocolate', 'crustaceans and molluscs', 'pulses' had remarkable potential to elicit adverse effects in nickel-sensitised individuals.
Asunto(s)
Exposición Dietética , Níquel/administración & dosificación , Adolescente , Adulto , Anciano , Cacao , Niño , Preescolar , Chocolate , Humanos , Lactante , Italia , Persona de Mediana Edad , Nivel sin Efectos Adversos Observados , Alimentos MarinosRESUMEN
Synthetic amorphous silica (SAS), manufactured in pyrogenic or precipitated form, is a nanomaterial with a widespread use as food additive (E 551). Oral exposure to SAS results from its use in food and dietary supplements, pharmaceuticals and toothpaste. Recent evidence suggests that oral exposure to SAS may pose health risks and highlights the need to address the toxic potential of SAS as affected by the physicochemical characteristics of the different forms of SAS. For this aim, investigating SAS toxicokinetics is of crucial importance and an analytical strategy for such an undertaking is presented. The minimization of silicon background in tissues, control of contamination (including silicon release from equipment), high-throughput sample treatment, elimination of spectral interferences affecting inductively coupled plasma mass spectrometry (ICP-MS) silicon detection, and development of analytical quality control tools are the cornerstones of this strategy. A validated method combining sample digestion with silicon determination by reaction cell ICP-MS is presented. Silica particles are converted to soluble silicon by microwave dissolution with mixtures of HNO3, H2O2 and hydrofluoric acid (HF), whereas interference-free ICP-MS detection of total silicon is achieved by ion-molecule chemistry with limits of detection (LoDs) in the range 0.2-0.5 µg Si g-1 for most tissues. Deposition of particulate SiO2 in tissues is assessed by single particle ICP-MS.
RESUMEN
Food additive E551 consists of synthetic amorphous silica (SAS), comprising agglomerates and aggregates of primary particles in the nanorange (<100 nm), which potential nanospecific risks for humans associated to dietary exposure are not yet completely assessed. In NANoREG project, aim of the study was to identify potential hazards of pyrogenic SAS nanomaterial NM-203 by a 90-day oral toxicity study (OECD test guideline 408). Adult Sprague-Dawley rats of both sexes were orally treated with 0, 2, 5, 10, 20 and 50 mg SAS/kg bw per day; dose levels were selected to be as close as possible to E551 dietary exposure. Several endpoints were investigated, the whole integrative study is presented here along with the results of dispersion characterization, tissue distribution, general toxicity, blood/serum biomarkers, histopathological and immunotoxicity endpoints. No mortality, general toxicity and limited deposition in target tissues were observed. NM-203 affected liver and spleen in both sexes. Proposed NOAEL 5 mg/kg bw per day in male rats for enlarged sinusoids in liver. In female rats, TSH and creatinine levels were affected, proposed LOAEL 2 mg/kg bw per day. Overall, these data provide new insight for a comprehensive risk assessment of SAS exposure by the oral route.
Asunto(s)
Aditivos Alimentarios/toxicidad , Nanoestructuras/toxicidad , Dióxido de Silicio/toxicidad , Administración Oral , Animales , Biomarcadores/sangre , Femenino , Aditivos Alimentarios/administración & dosificación , Hígado/patología , Masculino , Nanoestructuras/administración & dosificación , Nivel sin Efectos Adversos Observados , Ratas Sprague-Dawley , Medición de Riesgo , Silicio/análisis , Dióxido de Silicio/administración & dosificaciónRESUMEN
Titanium dioxide (TiO2) is widely used in pharmaceuticals preparations, cosmetics, and as a food additive (E171). It contains microparticles and a fraction of nanoparticles (NPs) which can be absorbed systemically by humans after ingestion. Increasing concern has been aroused about the impact of oral exposure to TiO2 NPs from dietary and non-dietary sources on human health. In spite of several toxicological studies conducted in recent years, a solid risk assessment of oral exposure to E171 has not been satisfactorily achieved. We investigated whether repeated oral administration of E171 to mice at a dose level (5 mg/kg body weight for 3 days/week for 3 weeks) comparable to estimated human dietary exposure, results in TiO2 deposition in the digestive system and internal organs, and in molecular and cellular alterations associated with an inflammatory response. To reproduce the first phase of digestion, a new administration approach involving the dripping of the E171 suspension into the mouth of mice was applied. Significant accumulation of titanium was observed in the liver and intestine of E171-fed mice; in the latter a threefold increase in the number of TiO2 particles was also measured. Titanium accumulation in liver was associated with necroinflammatory foci containing tissue monocytes/macrophages. Three days after the last dose, increased superoxide production and inflammation were observed in the stomach and intestine. Overall, the present study indicates that the risk for human health associated with dietary exposure to E171 needs to be carefully considered.
Asunto(s)
Aditivos Alimentarios/farmacocinética , Aditivos Alimentarios/toxicidad , Inflamación/inducido químicamente , Nanopartículas del Metal/toxicidad , Titanio/farmacocinética , Titanio/toxicidad , Administración Oral , Animales , Esquema de Medicación , Aditivos Alimentarios/administración & dosificación , Aditivos Alimentarios/química , Humanos , Intestinos , Hígado/metabolismo , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Ratones , Titanio/administración & dosificaciónRESUMEN
INTRODUCTION: Silicon dioxide, produced as synthetic amorphous silica (SAS), is made of nanoparticles (NPs), either present as such or as agglomerates and aggregates, and is widely used in many types of food processes and products as an additive. To assess whether repeated, long-term exposure to SAS NPs may result in adverse effects, mice were exposed for 18 months via drinking water to NM-200, one of the reference nanostructured silica used for applications related to food, at 4.8 mg NM-200/kg body weight per day, a dose relevant to the estimated dietary exposure to SAS in humans. METHODS: The experiment focused on the kidney and liver as target organs and was carried out in parallel using 3 mouse lines (wild type and transgenic) differing for the expression of α-synuclein, that is, murine and human mutated (A53T). Sensitive determination of silicon revealed higher contents in liver and kidneys of NM-200-exposed mice compared with unexposed aged-matched controls. RESULTS: Histological abnormalities, such as vacuolization of tubular epithelial cells, were detected in all kidneys, as well as inflammatory responses that were also detected in livers of exposed animals. Less frequent but more deleterious, amyloidosis lesions were observed in glomeruli, associated with perivascular amyloid accumulation in liver. CONCLUSION: These histological findings, in conjunction with the observation of detectable deposition of silica, highlight that chronic oral intake of SAS may pose a health risk to humans and need to be examined further.
RESUMEN
The distribution and potential bioaccumulation of dietary arsenic, cadmium, lead, mercury, and selenium in organs and tissues of rainbow trout (Oncorhyncus mykiss Walbaum, 1792), a major aquaculture species, was studied in relation to fish growth over a period of >3 years. Fish were reared under normal farming conditions, that is, fed a standard fish food and exposed to negligible levels of waterborne trace elements. The age-related variations in the content of each trace element in gills, kidney, liver, muscle, and skin were studied through nonparametric regression analysis. A buildup of all elements in all tissues and organs was observed, but due to dilution with growth, the concentrations did not increase, except in a few cases such as cadmium and mercury in liver and kidney. In muscle tissue, the concentrations of mercury, lead, and selenium did not alter significantly with growth, whereas cadmium increased but remained at exceedingly low levels. The concentration of arsenic in muscle tissue peaked at 14 months and then decreased in adult specimens. Arsenic speciation by high-performance liquid chromatography--inductively coupled plasma mass spectrometry revealed that arsenic in muscle was almost exclusively present in the form of nontoxic arsenobetaine. Application of a mercury mass balance model gave predicted concentrations in agreement with measured ones and showed that in farmed rainbow trout the ratio of mercury concentrations in feed and in fish is about 1:1. Therefore, rainbow trout does not approach the limits established for human consumption even when reared with feed at the maximum permitted levels. These findings highlight the low bioaccumulation potential of toxic trace elements such as cadmium, lead, and mercury in rainbow trout following dietary exposure. On the other hand, selenium concentrations in muscle (about 0.2 microg g (-1) of fresh weight) show that rainbow trout may be a good source of this essential element.
Asunto(s)
Arsénico/metabolismo , Cadmio/metabolismo , Plomo/metabolismo , Mercurio/metabolismo , Oncorhynchus mykiss/crecimiento & desarrollo , Selenio/metabolismo , Animales , Acuicultura , Arsénico/administración & dosificación , Cadmio/administración & dosificación , Dieta , Contaminación de Alimentos , Plomo/administración & dosificación , Mercurio/administración & dosificación , Oncorhynchus mykiss/metabolismo , Especificidad de Órganos , Selenio/administración & dosificaciónRESUMEN
Although selenium is of great importance for the human body, in several world regions the intake of this essential trace element does not meet the dietary reference values. To achieve optimal intake, fortification of bread by using selenium-enriched flour has been put forward. Less is known on the potential effect of sourdough fermentation, which might be worth exploring as the biological effects of selenium strongly depend on its chemical form and sourdough fermentation is known to cause transformations of nutrients and phytochemicals, including the conversion of inorganic selenium into organic selenocompounds. Here we investigated the bio transformation of selenium by sourdough fermentation in a typical Italian flatbread (piadina) made with standard (control) or selenium-enriched flour. The different piadina were submitted to in vitro digestion, and the biological activity of the resulting hydrolysates was tested by means of cultured human liver cells exposed to an exogenous oxidative stress. The use of selenium-enriched flour and sourdough fermentation increased the total content of bioaccessible selenium in organic form, compared to conventional fermentation, and led to protective effects counteracting oxidative damage in cultured cells. The present study suggests that selenium-rich, sourdough-fermented bakery products show promise for improving human selenium nutrition whenever necessary.
Asunto(s)
Pan/análisis , Selenio/metabolismo , Fermentación , Células Hep G2 , Humanos , Estrés Oxidativo , Selenio/químicaRESUMEN
A total diet study (TDS) provides representative and realistic data for assessing the dietary intake of chemicals, such as contaminants and residues, and nutrients, at a population level. Reproducing the diet through collection of customarily consumed foods and their preparation as habitually eaten is crucial to ensure representativeness, i.e., all relevant foods are included and all potential dietary sources of the substances investigated are captured. Having this in mind, a conceptual framework for building a relevant food-shopping list was developed as a research task in the European Union's 7th Framework Program project, 'Total Diet Study Exposure' (TDS-Exposure), aimed at standardising methods for food sampling, analyses, exposure assessment calculations and modelling, priority foods, and selection of chemical contaminants. A stepwise approach following the knowledge translation (KT) model for concept analysis is proposed to set up a general protocol for the collection of food products in a TDS in terms of steps (characterisation of the food list, development of the food-shopping list, food products collection) and pillars (background documentation, procedures, and tools). A simple model for structuring the information in a way to support the implementation of the process, by presenting relevant datasets, forms to store inherent information, and folders to record the results is also proposed. Reproducibility of the process and possibility to exploit the gathered information are two main features of such a system for future applications.
Asunto(s)
Encuestas sobre Dietas , Exposición Dietética , Contaminación de Alimentos/análisis , Unión Europea , HumanosRESUMEN
Acrylamide is a food toxicant suspected to be carcinogenic to humans. It is formed in the heat processing of carbohydrate-rich food. A current issue in food safety is whether acrylamide actually represents a risk for human health. At present, available information is insufficient to reach any conclusions. Inter alias, a still unclear matter is the fraction of acrylamide ingested by food that is absorbed and metabolized. This study compared the in vivo relative absorption of acrylamide formed in cooked food with that of the pure compound dissolved in drinking water using the pig (25 Italian Large White females) as the animal model. Acrylamide intakes of about 0.8 and 8 microg kg(-1) pig body wt day(-1) equal to one and ten times, respectively, the maximum average acrylamide daily intake for humans from the diet (expressed on a body wt basis) in industrialized countries, were chosen for the study. Adducts with the N-terminal valine of haemoglobin formed by acrylamide and its epoxide metabolite glycidamide, were used as exposure markers. Analyses were carried out by gas chromatography/mass spectrometry following in-house method validation. Both for the low and the high dose regimen, the glycidamide adduct levels in swine globins were lower of the limit of quantification of the method. As concerns acrylamide adducts, it was found that the relative absorption of acrylamide from feed and water was the same and that there is a direct proportionality between the adduct concentration and acrylamide intake.
Asunto(s)
Acrilamida/farmacocinética , Carcinógenos Ambientales/farmacocinética , Culinaria , Ingestión de Líquidos , Acrilamida/administración & dosificación , Administración Oral , Animales , Biomarcadores/metabolismo , Carcinógenos Ambientales/administración & dosificación , Dieta , Relación Dosis-Respuesta a Droga , Compuestos Epoxi/química , Compuestos Epoxi/metabolismo , Femenino , Cromatografía de Gases y Espectrometría de Masas , Hemoglobinas/química , Hemoglobinas/metabolismo , Unión Proteica , Porcinos , Valina/análogos & derivados , Valina/sangreRESUMEN
The evaluation of selenium-enriched vegetables as potential dietary sources of selenium, an essential element for humans, requires an assessment of the plant's accumulation ability as well as of the bioaccessibility and speciation of the accumulated selenium, which influence its biological effects in humans. Lettuce hydroponically grown at three selenite (SeVI)/selenate (SeIV) amendment levels was characterized accordingly. Selenium accumulation in lettuce leaves was greatest with Se(VI) amendment, whereas bioaccessibility was 70% on average in both cases. Selenium speciation in gastrointestinal hydrolysates, characterized by anion and cation exchange HPLC-ICP-MS, showed that Se(IV) was largely biotransformed into organoselenium metabolites, with selenomethionine accounting for 1/3 of the total detected species, whereas Se(VI) was incorporated as such in the edible portion of the plant, with only a small fraction (â¼20%) converted into organic species. Taking into account both nutritional quality and safety, the Se(IV)-enriched lettuce appeared more favorable as a potential selenium source for human consumption.
RESUMEN
The present study investigated potential modulatory effects of low doses of nano-sized titanium dioxide (TiO2) on intestinal cells in vivo and in vitro. After short-term exposure to TiO2 nanoparticles in rats, histopathological analysis of intestinal tissues indicated a gender-specific effect with increased length of intestinal villi in male rats only. Moreover the intestinal tissue showed nanoparticle deposition as revealed by ICP-MS determination of titanium. Increased serum testosterone levels were also detected. Considering the male-specific effects detected in vivo, the TiO2 nanoparticle interaction with intestinal cells was further characterized in vitro and the modulating effect of testosterone and a hormone-induced growth factor, namely Insulin-like Growth Factor 1 (IGF-1), was also assessed. Cytotoxicity assays and analysis of Reactive Oxygen Species (ROS) production showed neither cellular alteration nor oxidative stress for nanoparticles at low concentrations, even though they were able to penetrate intestinal cells, as revealed by electron microscopy. Cell treatments with nanoparticles in association with testosterone or IGF-1 showed increased cell proliferation, compared to nanoparticles or testosterone/IGF-1 alone. Since long-term intake of TiO2 nanoparticles at low doses is a relevant scenario for human exposure, attention should be given to the potential modulating activity of this nanomaterial on cell proliferation.
Asunto(s)
Intestinos/efectos de los fármacos , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/toxicidad , Titanio/administración & dosificación , Titanio/toxicidad , Administración Oral , Animales , Relación Dosis-Respuesta a Droga , Dispersión Dinámica de Luz , Femenino , Células HT29/efectos de los fármacos , Humanos , Intestinos/citología , Masculino , Nanopartículas del Metal/química , Microscopía Electrónica de Rastreo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Testosterona/farmacología , Titanio/química , Pruebas de Toxicidad/métodosRESUMEN
Recently, interest for the potential impact of consumer-relevant engineered nanoparticles on pregnancy has dramatically increased. This study investigates whether inhaled silver nanoparticles (AgNPs) reach and cross mouse placental barrier and induce adverse effects. Apart from their relevance for the growing use in consumer products and biomedical applications, AgNPs are selected since they can be unequivocally identified in tissues. Pregnant mouse females are exposed during the first 15 days of gestation by nose-only inhalation to a freshly produced aerosol of 18-20 nm AgNPs for either 1 or 4 h, at a particle number concentration of 3.80 × 107 part./cm-3 and at a mass concentration of 640 µg/m³. AgNPs are identified and quantitated in maternal tissues, placentas and foetuses by transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy and single-particle inductively coupled plasma mass spectrometry. Inhalation of AgNPs results in increased number of resorbed foetuses associated with reduced oestrogen plasma levels, in the 4 h/day exposed mothers. Increased expression of pregnancy-relevant inflammatory cytokines is also detected in the placentas of both groups. These results prove that NPs are able to reach and cross the mouse placenta and suggest that precaution should be taken with respect to acute exposure to nanoparticles during pregnancy.