RESUMEN
The recent SARS-CoV-2 and mpox outbreaks have highlighted the need to expand our arsenal of broad-spectrum antiviral agents for future pandemic preparedness. Host-directed antivirals are an important tool to accomplish this as they typically offer protection against a broader range of viruses than direct-acting antivirals and have a lower susceptibility to viral mutations that cause drug resistance. In this study, we investigate the exchange protein activated by cAMP (EPAC) as a target for broad-spectrum antiviral therapy. We find that the EPAC-selective inhibitor, ESI-09, provides robust protection against a variety of viruses, including SARS-CoV-2 and Vaccinia (VACV)-an orthopox virus from the same family as mpox. We show, using a series of immunofluorescence experiments, that ESI-09 remodels the actin cytoskeleton through Rac1/Cdc42 GTPases and the Arp2/3 complex, impairing internalization of viruses that use clathrin-mediated endocytosis (e.g. VSV) or micropinocytosis (e.g. VACV). Additionally, we find that ESI-09 disrupts syncytia formation and inhibits cell-to-cell transmission of viruses such as measles and VACV. When administered to immune-deficient mice in an intranasal challenge model, ESI-09 protects mice from lethal doses of VACV and prevents formation of pox lesions. Altogether, our finding shows that EPAC antagonists such as ESI-09 are promising candidates for broad-spectrum antiviral therapy that can aid in the fight against ongoing and future viral outbreaks.
Asunto(s)
Antivirales , COVID-19 , Mpox , Vaccinia , Animales , Ratones , Antivirales/farmacología , Mpox/tratamiento farmacológico , SARS-CoV-2/efectos de los fármacos , Vaccinia/tratamiento farmacológico , Virus Vaccinia/efectos de los fármacosRESUMEN
The coronavirus disease 2019 (COVID-19) pandemic requires the continued development of safe, long-lasting, and efficacious vaccines for preventive responses to major outbreaks around the world, and especially in isolated and developing countries. To combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we characterize a temperature-stable vaccine candidate (TOH-Vac1) that uses a replication-competent, attenuated vaccinia virus as a vector to express a membrane-tethered spike receptor binding domain (RBD) antigen. We evaluate the effects of dose escalation and administration routes on vaccine safety, efficacy, and immunogenicity in animal models. Our vaccine induces high levels of SARS-CoV-2 neutralizing antibodies and favorable T cell responses, while maintaining an optimal safety profile in mice and cynomolgus macaques. We demonstrate robust immune responses and protective immunity against SARS-CoV-2 variants after only a single dose. Together, these findings support further development of our novel and versatile vaccine platform as an alternative or complementary approach to current vaccines.
Asunto(s)
COVID-19 , Vacunas , Animales , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Inmunidad , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Linfocitos TRESUMEN
Despite sequence similarity to SARS-CoV-1, SARS-CoV-2 has demonstrated greater widespread virulence and unique challenges to researchers aiming to study its pathogenicity in humans. The interaction of the viral receptor binding domain (RBD) with its main host cell receptor, angiotensin-converting enzyme 2 (ACE2), has emerged as a critical focal point for the development of anti-viral therapeutics and vaccines. In this study, we selectively identify and characterize the impact of mutating certain amino acid residues in the RBD of SARS-CoV-2 and in ACE2, by utilizing our recently developed NanoBiT technology-based biosensor as well as pseudotyped-virus infectivity assays. Specifically, we examine the mutational effects on RBD-ACE2 binding ability, efficacy of competitive inhibitors, as well as neutralizing antibody activity. We also look at the implications the mutations may have on virus transmissibility, host susceptibility, and the virus transmission path to humans. These critical determinants of virus-host interactions may provide more effective targets for ongoing vaccines, drug development, and potentially pave the way for determining the genetic variation underlying disease severity.
Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/genética , Anticuerpos Neutralizantes/inmunología , Antivirales/farmacología , Sitios de Unión , COVID-19/inmunología , Células HEK293 , Interacciones Microbiota-Huesped , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores Virales/química , Receptores Virales/metabolismo , SARS-CoV-2/efectos de los fármacos , Alineación de Secuencia , Tratamiento Farmacológico de COVID-19RESUMEN
BACKGROUND: Unconventional natural gas (UNG) extraction (fracking) is ongoing in 29 North American shale basins (20 states), with ~6000 wells found within the Fayetteville shale (north-central Arkansas). If the chemical signature of fracking is detectable in streams, it can be employed to bookmark potential impacts. We evaluated benthic biofilm community composition as a proxy for stream chemistry so as to segregate anthropogenic signatures in eight Arkansas River catchments. In doing so, we tested the hypothesis that fracking characteristics in study streams are statistically distinguishable from those produced by agriculture or urbanization. RESULTS: Four tributary catchments had UNG-wells significantly more dense and near to our sampling sites and were grouped as 'potentially-impacted catchment zones' (PICZ). Four others were characterized by significantly larger forested area with greater slope and elevation but reduced pasture, and were classified as 'minimally-impacted' (MICZ). Overall, 46 bacterial phyla/141 classes were identified, with 24 phyla (52%) and 54 classes (38%) across all samples. PICZ-sites were ecologically more variable than MICZ-sites, with significantly greater nutrient levels (total nitrogen, total phosphorous), and elevated Cyanobacteria as bioindicators that tracked these conditions. PICZ-sites also exhibited elevated conductance (a correlate of increased ion concentration) and depressed salt-intolerant Spartobacteria, suggesting the presence of brine as a fracking effect. Biofilm communities at PICZ-sites were significantly less variable than those at MICZ-sites. CONCLUSIONS: Study streams differed by Group according to morphology, land use, and water chemistry but not in biofilm community structure. Those at PICZ-sites covaried according to anthropogenic impact, and were qualitatively similar to communities found at sites disturbed by fracking. The hypothesis that fracking signatures in study streams are distinguishable from those produced by other anthropogenic effects was statistically rejected. Instead, alterations in biofilm community composition, as induced by fracking, may be less specific than initially predicted, and thus more easily confounded by agriculture and urbanization effects (among others). Study streams must be carefully categorized with regard to the magnitude and extent of anthropogenic impacts. They must also be segregated with statistical confidence (as herein) before fracking impacts are monitored.
Asunto(s)
Biopelículas , Monitoreo del Ambiente , Fracking Hidráulico , Ríos/química , Contaminantes Químicos del Agua/análisis , Agricultura , Arkansas , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodiversidad , ADN Bacteriano , Ecología , Ecosistema , Mapeo Geográfico , Agua Subterránea/química , Agua Subterránea/microbiología , Hidrología , Microbiota , Gas Natural , Nitrógeno/análisis , Industria del Petróleo y Gas , Ácidos Fosforosos/análisis , ARN Ribosómico 16S/genética , Ríos/microbiología , Urbanización , Contaminación del AguaRESUMEN
The Fayetteville Shale within north central Arkansas is an area of extensive unconventional natural gas (UNG) production. Recently, the Scott Henderson Gulf Mountain Wildlife Management Area (GMWMA) was leased from the state of Arkansas for NG exploration, raising concerns about potential impacts on water resources. From November 2010 through November 2014, we monitored four reaches of the South Fork Little Red River (SFLRR), within the GMWMA, establishing baseline physico-chemical characteristics prior to UNG development and assessing trends in parameters during and after UNG development. Water samples were collected monthly during baseflow conditions and analyzed for conductivity, turbidity, ions, total organic carbon (TOC), and metals. All parameters were flow-adjusted and evaluated for monotonic changes over time. The concentrations of all constituents measured in the SFLRR were generally low (e.g., nitrate ranged from <0.005 to 0.268 mg/l across all sites and sample periods), suggesting the SFLRR is of high water quality. Flow-adjusted conductivity measurements and sodium concentrations increased at site 1, while magnesium decreased across all four sites, TOC decreased at sites 1 and 3, and iron decreased at site 1 over the duration of the study. With the exception of conductivity and sodium, the physico-chemical parameters either decreased or did not change over the 4-year duration, indicating that UNG activities within the GMWMA have had minimal or no detectable impact on water quality within the SFLRR. Our study provides essential baseline information that can be used to evaluate water quality within the SFLRR in the future should UNG activity within the GMWMA expand.
Asunto(s)
Monitoreo del Ambiente/métodos , Gas Natural , Yacimiento de Petróleo y Gas , Ríos/química , Contaminantes Químicos del Agua/análisis , Arkansas , Metales/análisis , Nitratos/análisis , Sulfatos/análisis , Calidad del AguaRESUMEN
BACKGROUND: This overview of reviews aims to identify evidence on the benefits (i.e. tobacco use abstinence and reduction in smoking frequency) and harms (i.e. possible adverse events/outcomes) of smoking cessation interventions among adults aged 18 years and older. METHODS: We searched Medline, Embase, PsycINFO, Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, the CADTH Health Technology Assessment Database and several other websites for grey literature. Searches were conducted on November 12, 2018, updated on September 24, 2020, with publication years 2008 to 2020. Two reviewers independently performed title-abstract and full-text screening considering pre-determined inclusion criteria. Data extraction and quality assessments were initially completed by two reviewers independently (i.e. 73% of included studies (n = 22)) using A Measurement Tool to Assess Systematic Reviews-2 (AMSTAR 2), and the remainder done by one reviewer and verified by another due to resources and feasibility. The application of Grading of Recommendations Assessment, Development and Evaluation (GRADE) was performed by one independent reviewer and verified by another. RESULTS: A total of 22 Cochrane systematic reviews evaluating the impact of smoking cessation interventions on outcomes such as tobacco use abstinence, reduction in smoking frequency, quality of life and possible adverse events were included. Pharmaceutical (i.e. varenicline, cytisine, nicotine replacement therapy (NRT), bupropion) and behavioural interventions (i.e. physician advice, non-tailored print-based self-help materials, stage-based individual counselling, etc.) showed to have increased smoking cessation; whereas, data for mobile phone-based interventions including text messaging, hypnotherapy, acupuncture, continuous auricular stimulation, laser therapy, electrostimulation, acupressure, St John's wort, S-adenosyl-L-methionine (SAMe), interactive voice response systems and other combination treatments were unclear. Considering harms related to smoking cessation interventions, small/mild harms (i.e. increased palpitations, chest pain, nausea, insomnia, headache) were observed following NRT, varenicline and cytisine use. There were no data on harms related to behavioural therapies (i.e. individual or group counselling self-help materials, internet interventions), combination therapies or other therapies (i.e. laser therapy, electrostimulation, acupressure, St John's wort, SAMe). CONCLUSION: Results suggest that pharmacological and behavioural interventions may help the general smoking population quit smoking with observed small/mild harms following NRT or varenicline. Consequently, evidence regarding ideal intervention strategies and the long-term impact of these interventions for preventing smoking was unclear. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42018099691.
Asunto(s)
Cese del Hábito de Fumar , Revisiones Sistemáticas como Asunto , Vareniclina , Humanos , Cese del Hábito de Fumar/métodos , Adulto , Vareniclina/uso terapéutico , Bupropión/uso terapéutico , Quinolizinas/uso terapéutico , Alcaloides/uso terapéutico , Dispositivos para Dejar de Fumar Tabaco , Calidad de Vida , Azocinas/uso terapéutico , Agentes para el Cese del Hábito de Fumar/uso terapéutico , Alcaloides de QuinolizidinaRESUMEN
SARS-CoV-2, the etiological agent behind the coronavirus disease 2019 (COVID-19) pandemic, has continued to mutate and create new variants with increased resistance against the WHO-approved spike-based vaccines. With a significant portion of the worldwide population still unvaccinated and with waning immunity against newly emerging variants, there is a pressing need to develop novel vaccines that provide broader and longer-lasting protection. To generate broader protective immunity against COVID-19, we developed our second-generation vaccinia virus-based COVID-19 vaccine, TOH-VAC-2, encoded with modified versions of the spike (S) and nucleocapsid (N) proteins as well as a unique poly-epitope antigen that contains immunodominant T cell epitopes from seven different SARS-CoV-2 proteins. We show that the poly-epitope antigen restimulates T cells from the PBMCs of individuals formerly infected with SARS-CoV-2. In mice, TOH-VAC-2 vaccination produces high titers of S- and N-specific antibodies and generates robust T cell immunity against S, N, and poly-epitope antigens. The immunity generated from TOH-VAC-2 is also capable of protecting mice from heterologous challenge with recombinant VSV viruses that express the same SARS-CoV-2 antigens. Altogether, these findings demonstrate the effectiveness of our versatile vaccine platform as an alternative or complementary approach to current vaccines.
RESUMEN
The approval of different cytokines as anti-neoplastic agents has been challenged by dose-limiting toxicities. Although reducing dose levels affords improved tolerability, efficacy is precluded at these suboptimal doses. Strategies combining cytokines with oncolytic viruses have proven to elicit potent survival benefits in vivo, despite promoting rapid clearance of the oncolytic virus itself. Herein, we developed an inducible expression system based on a Split-T7 RNA polymerase for oncolytic poxviruses to regulate the spatial and temporal expression of a beneficial transgene. This expression system utilizes approved anti-neoplastic rapamycin analogues for transgene induction. This treatment regimen thus offers a triple anti-tumour effect through the oncolytic virus, the induced transgene, and the pharmacologic inducer itself. More specifically, we designed our therapeutic transgene by fusing a tumour-targeting chlorotoxin (CLTX) peptide to interleukin-12 (IL-12), and demonstrated that the constructs were functional and cancer-selective. We next encoded this construct into the oncolytic vaccinia virus strain Copenhagen (VV-iIL-12mCLTX), and were able to demonstrate significantly improved survival in multiple syngeneic murine tumour models through both localized and systemic virus administration, in combination with rapalogs. In summary, our findings demonstrate that rapalog-inducible genetic switches based on Split-T7 polymerase allow for regulation of the oncolytic virus-driven production of tumour-localized IL-12 for improved anti-cancer immunotherapy.
RESUMEN
Introduction: Adipocytes in the tumour microenvironment are highly dynamic cells that have an established role in tumour progression, but their impact on anti-cancer therapy resistance is becoming increasingly difficult to overlook. Methods: We investigated the role of adipose tissue and adipocytes in response to oncolytic virus (OV) therapy in adipose-rich tumours such as breast and ovarian neoplasms. Results: We show that secreted products in adipocyte-conditioned medium significantly impairs productive virus infection and OV-driven cell death. This effect was not due to the direct neutralization of virions or inhibition of OV entry into host cells. Instead, further investigation of adipocyte secreted factors demonstrated that adipocyte-mediated OV resistance is primarily a lipid-driven phenomenon. When lipid moieties are depleted from the adipocyte-conditioned medium, cancer cells are re-sensitized to OV-mediated destruction. We further demonstrated that blocking fatty acid uptake by cancer cells, in a combinatorial strategy with virotherapy, has clinical translational potential to overcome adipocyte-mediated OV resistance. Discussion: Our findings indicate that while adipocyte secreted factors can impede OV infection, the impairment of OV treatment efficacy can be overcome by modulating lipid flux in the tumour milieu.
Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Neoplasias Ováricas , Humanos , Femenino , Microambiente Tumoral , Medios de Cultivo Condicionados , Virus Oncolíticos/fisiología , Neoplasias Ováricas/terapia , LípidosRESUMEN
Colorectal cancer is the third most diagnosed cancer and the second leading cause of cancer mortality worldwide, highlighting an urgent need for new therapeutic options and combination strategies for patients. The orchestration of potent T cell responses against human cancers is necessary for effective antitumour immunity. However, regression of a limited number of cancers has been induced by immune checkpoint inhibitors, T cell engagers (TCEs) and/or oncolytic viruses. Although one TCE has been FDA-approved for the treatment of hematological malignancies, many challenges exist for the treatment of solid cancers. Here, we show that TCEs targeting CEACAM5 and CD3 stimulate robust activation of CD4 and CD8-positive T cells in in vitro co-culture models with colorectal cancer cells, but in vivo efficacy is hindered by a lack of TCE retention in the tumour microenvironment and short TCE half-life, as demonstrated by HiBiT bioluminescent TCE-tagging technology. To overcome these limitations, we engineered Bispecific Engager Viruses, or BEVirs, a novel tumour-targeted vaccinia virus platform for intra-tumour delivery of these immunomodulatory molecules. We characterized virus-mediated TCE-secretion, TCE specificity and functionality from infected colorectal cancer cells and patient tumour samples, as well as TCE cytotoxicity in spheroid models, in the presence and absence of T cells. Importantly, we show regression of colorectal tumours in both syngeneic and xenograft mouse models. Our data suggest that a different profile of cytokines may contribute to the pro-inflammatory and immune effects driven by T cells in the tumour microenvironment to provide long-lasting immunity and abscopal effects. We establish combination regimens with immune checkpoint inhibitors for aggressive colorectal peritoneal metastases. We also observe a significant reduction in lung metastases of colorectal tumours through intravenous delivery of our oncolytic virus driven T-cell based combination immunotherapy to target colorectal tumours and FAP-positive stromal cells or CTLA4-positive Treg cells in the tumour microenvironment. In summary, we devised a novel combination strategy for the treatment of colorectal cancers using oncolytic vaccinia virus to enhance immune-payload delivery and boost T cell responses within tumours.
Asunto(s)
Neoplasias Colorrectales , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Ratones , Animales , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia , Virus Vaccinia , Modelos Animales de Enfermedad , Neoplasias Colorrectales/terapia , Microambiente TumoralRESUMEN
Poxvirus vectors represent versatile modalities for engineering novel vaccines and cancer immunotherapies. In addition to their oncolytic capacity and immunogenic influence, they can be readily engineered to express multiple large transgenes. However, the integration of multiple payloads into poxvirus genomes by traditional recombination-based approaches can be highly inefficient, time-consuming and cumbersome. Herein, we describe a simple, cost-effective approach to rapidly generate and purify a poxvirus vector with multiple transgenes. By utilizing a simple, modular CRISPR/Cas9 assisted-recombinant vaccinia virus engineering (CARVE) system, we demonstrate generation of a recombinant vaccinia virus expressing three distinct transgenes at three different loci in less than 1 week. We apply CARVE to rapidly generate a novel immunogenic vaccinia virus vector, which expresses a bacterial diadenylate cyclase. This novel vector, STINGPOX, produces cyclic di-AMP, a STING agonist, which drives IFN signaling critical to the anti-tumor immune response. We demonstrate that STINGPOX can drive IFN signaling in primary human cancer tissue explants. Using an immunocompetent murine colon cancer model, we demonstrate that intratumoral administration of STINGPOX in combination with checkpoint inhibitor, anti-PD1, promotes survival post-tumour challenge. These data demonstrate the utility of CRISPR/Cas9 in the rapid arming of poxvirus vectors with therapeutic payloads to create novel immunotherapies.
Asunto(s)
Neoplasias , Poxviridae , Humanos , Animales , Ratones , Vectores Genéticos/genética , Virus Vaccinia , Poxviridae/genética , InmunoterapiaRESUMEN
Recent advances in cancer therapeutics clearly demonstrate the need for innovative multiplex therapies that attack the tumour on multiple fronts. Oncolytic or "cancer-killing" viruses (OVs) represent up-and-coming multi-mechanistic immunotherapeutic drugs for the treatment of cancer. In this study, we perform an in-vitro screen based on virus-encoded artificial microRNAs (amiRNAs) and find that a unique amiRNA, herein termed amiR-4, confers a replicative advantage to the VSVΔ51 OV platform. Target validation of amiR-4 reveals ARID1A, a protein involved in chromatin remodelling, as an important player in resistance to OV replication. Virus-directed targeting of ARID1A coupled with small-molecule inhibition of the methyltransferase EZH2 leads to the synthetic lethal killing of both infected and uninfected tumour cells. The bystander killing of uninfected cells is mediated by intercellular transfer of extracellular vesicles carrying amiR-4 cargo. Altogether, our findings establish that OVs can serve as replicating vehicles for amiRNA therapeutics with the potential for combination with small molecule and immune checkpoint inhibitor therapy.
Asunto(s)
Vesículas Extracelulares , MicroARNs , Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , MicroARNs/genética , Neoplasias/terapia , Virus Oncolíticos/genéticaRESUMEN
Harmful algal blooms (HABs) are increasing in magnitude, frequency, and duration caused by anthropogenic factors such as eutrophication and altered climatic regimes. While the concentrations and ratios of nitrogen (N) and phosphorus are correlated with bloom biomass and cyanotoxin production, there is less known about how N forms and micronutrients (MN) interact to regulate HABs and cyanotoxin production. Here, we used two separate approaches to examine how N and MN supply affects cyanobacteria biomass and cyanotoxin production. First, we used a Microcystis laboratory culture to examine how N and MN concentration and N form affected the biomass, particulate N, and microcystin-LR concentration and cell quotas. Then, we monitored the N, iron, molybdenum, and total microcystin concentrations from a hypereutrophic reservoir. From this hypereutrophic reservoir, we performed a community HAB bioassay to examine how N and MN addition affected the biomass, particulate N, and microcystin concentration. Microcystis laboratory cultures grown in high urea and MN conditions produced more biomass, particulate N, and had similar C:N stoichiometry, but lower microcystin-LR concentrations and cell quotas when compared to high nitrate and MN conditions. Our community HAB bioassay revealed no interactions between N concentration and MN addition caused by non-limiting MN background concentrations. Biomass, particulate N, and microcystin concentration increased with N addition. The community HAB amended with MN resulted in greater microcystin-LA concentration compared to non-MN amended community HABs. Our results highlight the complexity of how abiotic variables control biomass and cyanotoxin production in both laboratory cultures of Microcystis and community HABs.
Asunto(s)
Cianobacterias , Microcystis , Microcistinas , Micronutrientes , NitrógenoRESUMEN
BACKGROUND: Guidelines recommend that individuals with opioid use disorder (OUD) receive pharmacological and psychosocial interventions; however, the most appropriate psychosocial intervention is not known. In collaboration with people with lived experience, clinicians, and policy makers, we sought to assess the relative benefits of psychosocial interventions as an adjunct to opioid agonist therapy (OAT) among persons with OUD. METHODS: A review protocol was registered a priori (CRD42018090761), and a comprehensive search for randomized controlled trials (RCT) was conducted from database inception to June 2020 in MEDLINE, Embase, PsycINFO and the Cochrane Central Register of Controlled Trials. Established methods for study selection and data extraction were used. Primary outcomes were treatment retention and opioid use (measured by urinalysis for opioid use and opioid abstinence outcomes). Odds ratios were estimated using network meta-analyses (NMA) as appropriate based on available evidence, and in remaining cases alternative approaches to synthesis were used. RESULTS: Seventy-two RCTs met the inclusion criteria. Risk of bias evaluations commonly identified study limitations and poor reporting with regard to methods used for allocation concealment and selective outcome reporting. Due to inconsistency in reporting of outcome measures, only 48 RCTs (20 unique interventions, 5,404 participants) were included for NMA of treatment retention, where statistically significant differences were found when psychosocial interventions were used as an adjunct to OAT as compared to OAT-only. The addition of rewards-based interventions such as contingency management (alone or with community reinforcement approach) to OAT was superior to OAT-only. Few statistically significant differences between psychosocial interventions were identified among any other pairwise comparisons. Heterogeneity in reporting formats precluded an NMA for opioid use. A structured synthesis was undertaken for the remaining outcomes which included opioid use (n = 18 studies) and opioid abstinence (n = 35 studies), where the majority of studies found no significant difference between OAT plus psychosocial interventions as compared to OAT-only. CONCLUSIONS: This systematic review offers a comprehensive synthesis of the available evidence and the limitations of current trials of psychosocial interventions applied as an adjunct to OAT for OUD. Clinicians and health services may wish to consider integrating contingency management in addition to OAT for OUD in their settings to improve treatment retention. Aside from treatment retention, few differences were consistently found between psychosocial interventions adjunctive to OAT and OAT-only. There is a need for high-quality RCTs to establish more definitive conclusions. TRIAL REGISTRATION: PROSPERO registration CRD42018090761.
Asunto(s)
Analgésicos Opioides/uso terapéutico , Trastornos Relacionados con Opioides/terapia , Intervención Psicosocial/métodos , Terapia Combinada , Humanos , Metaanálisis en Red , Guías de Práctica Clínica como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del TratamientoRESUMEN
Construction of unconventional natural gas (UNG) infrastructure (e.g., well pads, pipelines) is an increasingly common anthropogenic stressor that increases potential sediment erosion. Increased sediment inputs into nearby streams may decrease autotrophic processes through burial and scour, or sediment bound nutrients could have a positive effect through alleviating potential nutrient limitations. Ten streams with varying catchment UNG well densities (0-3.6 wells/km(2)) were sampled during winter and spring of 2010 and 2011 to examine relationships between landscape scale disturbances associated with UNG activity and stream periphyton [chlorophyll a (Chl a)] and gross primary production (GPP). Local scale variables including light availability and water column physicochemical variables were measured for each study site. Correlation analyses examined the relationships of autotrophic processes and local scale variables with the landscape scale variables percent pasture land use and UNG metrics (well density and well pad inverse flow path length). Both GPP and Chl a were primarily positively associated with the UNG activity metrics during most sample periods; however, neither landscape variables nor response variables correlated well with local scale factors. These positive correlations do not confirm causation, but they do suggest that it is possible that UNG development can alleviate one or more limiting factors on autotrophic production within these streams. A secondary manipulative study was used to examine the link between nutrient limitation and algal growth across a gradient of streams impacted by natural gas activity. Nitrogen limitation was common among minimally impacted stream reaches and was alleviated in streams with high UNG activity. These data provide evidence that UNG may stimulate the primary production of Fayetteville shale streams via alleviation of N-limitation. Restricting UNG activities from the riparian zone along with better enforcement of best management practices should help reduce these possible impacts of UNG activities on stream autotrophic processes.
Asunto(s)
Monitoreo del Ambiente , Gas Natural/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Organismos Acuáticos/fisiología , ArkansasRESUMEN
Oil and gas extraction in shale plays expanded rapidly in the U.S. and is projected to expand globally in the coming decades. Arkansas has doubled the number of gas wells in the state since 2005 mostly by extracting gas from the Fayetteville Shale with activity concentrated in mixed pasture-deciduous forests. Concentrated well pads in close proximity to streams could have adverse effects on stream water quality and biota if sedimentation associated with developing infrastructure or contamination from fracturing fluid and waste occurs. Cumulative effects of gas activity and local habitat conditions on macroinvertebrate communities were investigated across a gradient of gas well activity (0.2-3.6 wells per km(2)) in ten stream catchments in spring 2010 and 2011. In 2010, macroinvertebrate density was positively related to well pad inverse flowpath distance from streams (r=0.84, p<0.001). Relatively tolerant mayflies Baetis and Caenis (r=0.64, p=0.04), filtering hydropsychid caddisflies (r=0.73, p=0.01), and chironomid midge densities (r=0.79, p=0.008) also increased in streams where more well pads were closer to stream channels. Macroinvertebrate trophic structure reflected environmental conditions with greater sediment and primary production in streams with more gas activity close to streams. However, stream water turbidity (r=0.69, p=0.02) and chlorophyll a (r=0.89, p<0.001) were the only in-stream variables correlated with gas well activities. In 2011, a year with record spring flooding, a different pattern emerged where mayfly density (p=0.74, p=0.01) and mayfly, stonefly, and caddisfly richness (r=0.78, p=0.008) increased in streams with greater well density and less silt cover. Hydrology and well pad placement in a catchment may interact to result in different relationships between biota and catchment activity between the two sample years. Our data show evidence of different macroinvertebrate communities expressed in catchments with different levels of gas activity that reinforce the need for more quantitative analyses of cumulative freshwater-effects from oil and gas development.