RESUMEN
Portable optical spectrometers are crucial devices for bio-chemical sensing and spectroscopic applications whereby robust, compact and cost-effective set-ups are desirable. However, existing miniaturized instruments typically struggle to achieve broad wavelength operation and high spectral resolution at the same time. Here, an all-fiber optical spectrometer based on two cascaded Bragg gratings is devised and demonstrated, showing a record resolution and a wavelength span-to-resolution ratio larger than that of most miniature broadband spectrometers reported to date. Thanks to a synchronous control of the grating lengths and to a unique combination of their reflection features, spectral analysis of incoherent light within 1 pm is achieved. On the other hand, fast and reproducible wavelength tuning over several nanometers on a millisecond-timescale is ensured by mechanical stretching of the internal fiber, limited only by the actuator's dynamic range. A striking evidence of the spectrometer capabilities is provided with Doppler-limited spectroscopy of gas absorption bands performed with a near-infrared LED source. The observed spectra exhibit lineshapes comparable with those obtained by laser-based set-ups and the retrieved gas-line parameters are in agreement with existing spectroscopic databases. The spectrometer lends itself to applications in high-resolution interrogation of multiple fiber-optic sensors as well as broadband imaging with supercontinuum light.
RESUMEN
The real-time monitoring of densely populated areas with high seismic and volcanic risk is of crucial importance for the safety of people and infrastructures. When an earthquake occurs, the Earth surface experiences both translational and rotational motions. The latter are usually not monitored, but their measurement and characterization are essential for a full description of the ground motion. Here we present preliminary observational data of a high-sensitivity rotational sensor based on a 2-km-long fiber-optic Sagnac gyroscope, presently under construction in the middle of the Campi Flegrei Volcanic Area (Pozzuoli, Italy). We have evaluated its performance by analyzing data continuously recorded during an acquisition campaign of five months. The experimental setup was composed of a digital nine-component seismic station equipped with both a rotational sensor and conventional seismic sensors (seismometers, accelerometers, and tiltmeters). During this experiment we detected seismic noise and ground rotations wavefield induced by small to medium local earthquakes (M D<3). The prototype gyroscope shows a very promising sensitivity in the range of 5×10-7-8×10-9 r a d/s/H z over the frequency bandwidth 5 mHz-50 Hz. Future upgrades and perspectives are discussed.
RESUMEN
Whispering-gallery mode microresonators have gained wide popularity as experimental platforms for different applications, ranging from biosensing to nonlinear optics. Typically, the resonant modes of dielectric microresonators are stimulated via evanescent wave coupling, facilitated using tapered optical fibers or coupling prisms. However, this method poses serious shortcomings due to fabrication and access-related limitations, which could be elegantly overcome by implementing a free-space coupling approach; although additional alignment procedures are needed in this case. To address this issue, we have developed a new algorithm to excite the microresonator automatically. Here, we show the working mechanism and the preliminary results of our experimental method applied to a home-made silica microsphere, using a visible laser beam with a spatial light modulator and a software control.
RESUMEN
We provide here an overview of passive optical micro-cavities made of droplets in the liquid phase. We focus on resonators that are naturally created and suspended under gravity thanks to interfacial forces, illustrating simple ways to excite whispering-gallery modes in various slow-evaporation liquids using free-space optics. Similar to solid resonators, frequency locking of near-infrared and visible lasers to resonant modes is performed exploiting either phase-sensitive detection of the leakage cavity field or multiple interference between whispering-gallery modes in the scattered light. As opposed to conventional micro-cavity sensors, each droplet acts simultaneously as the sensor and the sample, whereby the internal light can detect dissolved compounds and particles. Optical quality factors up to 107â»108 are observed in liquid-polymer droplets through photon lifetime measurements. First attempts in using single water droplets are also reported. These achievements point out their huge potential for direct spectroscopy and bio-chemical sensing in liquid environments. Finally, the first experiments of cavity optomechanics with surface acoustic waves in nanolitre droplets are presented. The possibility to perform studies of viscous-elastic properties points to a new paradigm: a droplet device as an opto-fluid-mechanics laboratory on table-top scale under controlled environmental conditions.
RESUMEN
The measurement of ionizing radiation (IR) is a crucial issue in different areas of interest, from environmental safety and industrial monitoring to aerospace and medicine. Optical fiber sensors have recently proven good candidates as radiation dosimeters. Here we investigate the effect of IR on germanosilicate optical fibers. A piece of Ge-doped fiber enclosed between two fiber Bragg gratings (FBGs) is irradiated with gamma radiation generated by a 6 MV medical linear accelerator. With respect to other FBG-based IR dosimeters, here the sensor is only the bare fiber without any special internal structure. A near infrared laser is frequency locked to the cavity modes for high resolution measurement of radiation induced effects on the fiber optical parameters. In particular, we observe a variation of the fiber thermo-optic response with the radiation dose delivered, as expected from the interaction with Ge defect centers, and demonstrate a detection limit of 360 mGy. This method can have an impact in those contexts where low radiation doses have to be measured both in small volumes or over large areas, such as radiation therapy and radiation protection, while bare optical fibers are cheap and disposable.
Asunto(s)
Tecnología de Fibra Óptica/métodos , Fibras Ópticas , Radiación IonizanteRESUMEN
A low-noise transducer based on a fiber Fabry-Perot (FFP) cavity was used as a pickup for an acoustic guitar. A distributed feedback (DFB) laser was locked to a 25 MHz-wide resonance of the FFP cavity using the Pound-Drever-Hall method. The correction signal was used as the audio output and was preamplified and sampled at up to 96 kHz. The pickup system is largely immune against optical noise sources, exhibits a flat frequency response from the infrasound region to about 25 kHz, and has a distortion-free audio output range of about 50 dB.
Asunto(s)
Acústica/instrumentación , Rayos Láser , Música , Fibras Ópticas , Transductores , Diseño de Equipo , Análisis de Falla de EquipoRESUMEN
We describe a model evaluating changes in the optical isolation of a Faraday isolator when passing from air to vacuum in terms of different thermal effects in the crystal. The changes are particularly significant in the crystal thermal lensing (refraction index and thermal expansion) and in its Verdet constant and can be ascribed to the less efficient convection cooling of the magneto-optic crystal of the Faraday isolator. An isolation decrease by a factor of 10 is experimentally observed in a Faraday isolator that is used in a gravitational wave experiment (Virgo) with a 10 W input laser when going from air to vacuum. A finite element model simulation reproduces with a great accuracy the experimental data measured on Virgo and on a test bench. A first set of measurements of the thermal lensing has been used to characterize the losses of the crystal, which depend on the sample. The isolation factor measured on Virgo confirms the simulation model and the absorption losses of 0.0016 +/- 0.0002/cm for the TGG magneto-optic crystal used in the Faraday isolator.
RESUMEN
The Virgo interferometer, aimed at detecting gravitational waves, is now in a commissioning phase. Measurements of its optical properties are needed for the understanding of the instrument. We present the techniques developed for the measurement of the optical parameters of Virgo. These parameters are compared with the Virgo specifications.