Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Molecules ; 28(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36770894

RESUMEN

The efficiency of an advanced oxidation process (AOP) using direct and indirect ozonation for the removal of pharmaceutical residues from deliberately spiked deionized water was examined. Both direct and indirect ozonation demonstrated 34% to 100% removal of the parent compounds. However, based on the products' chemical structure and toxicity, we suggest that despite using accepted and affordable ozone and radical concentrations, the six parent compounds were not fully degraded, but merely transformed into 25 new intermediate products. The transformation products (TPs) differed slightly in structure but were mostly similar to their parent compounds in their persistence, stability and toxicity; a few of the TPs were found to be even more toxic than their parent compounds. Therefore, an additional treatment is required to improve and upgrade the traditional AOP toward degradation and removal of both parent compounds and their TPs for safer release into the environment.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Contaminantes Químicos del Agua/química , Ozono/química , Oxidación-Reducción , Agua , Preparaciones Farmacéuticas
2.
J Environ Manage ; 308: 114655, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35131704

RESUMEN

Per-/poly-fluoroalkyl substances (PFAS) are an emerging class of environmental contaminants used as an additive across various commodity and fire-retardant products, for their unique thermo-chemical stability, and to alter their surface properties towards selective liquid repellence. These properties also make PFAS highly persistent and mobile across various environmental compartments, leading to bioaccumulation, and causing acute ecotoxicity at all trophic levels particularly to human populations, thus increasing the need for monitoring at their repositories or usage sites. In this review, current nano-enabled methods towards PFAS sensing and its monitoring in wastewater are critically discussed and benchmarked against conventional detection methods. The discussion correlates the materials' properties to the sensitivity, responsiveness, and reproducibility of the sensing performance for nano-enabled sensors in currently explored electrochemical, spectrophotometric, colorimetric, optical, fluorometric, and biochemical with limits of detection of 1.02 × 10-6 µg/L, 2.8 µg/L, 1 µg/L, 0.13 µg/L, 6.0 × 10-5 µg/L, and 4.141 × 10-7 µg/L respectively. The cost-effectiveness of sensing platforms plays an important role in the on-site analysis success and upscalability of nano-enabled sensors. Environmental monitoring of PFAS is a step closer to PFAS remediation. Electrochemical and biosensing methods have proven to be the most reliable tools for future PFAS sensing endeavors with very promising detection limits in an aqueous matrix, short detection times, and ease of fabrication.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Humanos , Reproducibilidad de los Resultados , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
3.
Ecotoxicol Environ Saf ; 222: 112522, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34304132

RESUMEN

Arsenic (As) contamination of freshwater resources constitutes a major environmental issue affecting over 200 million people worldwide. Although the use of microorganisms for the bioremediation of As has been well studied, only very few candidates have been identified to date. Here, we investigated bacteria associated with the Red Sea sponge Theonella swinhoei and their potential to reduce As in a low-salinity liquid medium. This Indo-Pacific common sponge has been shown to hyper-accumulate As, at an average concentration of 8600 mg/g-1 in an environment uncontaminated by arsenic or barium. Four isolated strains of bacteria exhibited arsenic reduction potential by transforming inorganic As in the form of arsenate (iAsV) to arsenite (iAsIII). Two of these isolates were identified as Alteromonas macleodii and Pseudovibrio ascidisceicola, and the other two isolates, both belonging to the same species, were identified as Pseudovibrio denitrificans. The four isolates were then cultured in a low-salinity iAsV-rich medium (5 mM) and As concentration was measured over time using a specifically designed high-performance liquid chromatograph coupled to a mass spectrometer (HPLC-MS). Out of the four isolates, A. macleodii and P. ascidisceicola grew successfully in a low-salinity liquid medium and reduced AsV to AsIII at an average rate of 0.094 and 0.083 mM/h, respectively, thereby demonstrating great potential for the bioremediation of As-contaminated groundwater.


Asunto(s)
Arsénico , Rhodobacteraceae , Theonella , Alteromonas , Animales , Arseniatos , Biodegradación Ambiental , Humanos , Filogenia , ARN Ribosómico 16S
4.
J Environ Manage ; 254: 109794, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31780268

RESUMEN

Pharmaceuticals are a subset of micropollutants, present in the environment in trace concentrations. Because of their persistent nature, these chemicals are of particular concern. Little is known about how mixtures of pharmaceutical residues, found in WWTP effluents, affect the environment or public health. Yet, numerous studies show negative outcomes for both aquatic and terrestrial organisms, suggesting that they are given both to bioaccumulation and uptake in plants. Israel leads the world in effluent reuse (86%), almost exclusively utilized for purposes of agricultural irrigation. Pharmaceuticals, however, are not included in Israel's water regulatory oversight or management, essentially creating an epidemiological experiment among its citizens and environment. Globally, these compounds also are not commonly subject to monitoring or regulation. This study reviews and analyzes water policies and regulation worldwide that address the presence of pharmaceuticals in water resources, with a particular focus on Australia, Singapore, Switzerland, and the USA. Furthermore, the study investigates the reasons why these chemicals are not yet regulated in Israel. Based on a comprehensive evaluation of the data and analysis of the regulatory rationale in other countries, a list of recommended pharmaceutical standards that should be measured and monitored in Israel's wastewater treatment system is proposed. The suggested prioritization criteria should be at the heart of a new regulatory agenda for controlling pharmaceutical contamination in wastewater.


Asunto(s)
Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Australia , Monitoreo del Ambiente , Israel , Singapur , Suiza , Eliminación de Residuos Líquidos , Aguas Residuales
5.
Glob Chang Biol ; 25(12): 4194-4207, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31512309

RESUMEN

Coral reefs represent the most diverse marine ecosystem on the planet, yet they are undergoing an unprecedented decline due to a combination of increasing global and local stressors. Despite the wealth of research investigating these stressors, Artificial Light Pollution at Night (ALAN) or "ecological light pollution" represents an emerging threat that has received little attention in the context of coral reefs, despite the potential of disrupting the chronobiology, physiology, behavior, and other biological processes of coral reef organisms. Scleractinian corals, the framework builders of coral reefs, depend on lunar illumination cues to synchronize their biological rhythms such as behavior, reproduction and physiology. While, light pollution (POL) may mask and lead de-synchronization of these biological rhythms process. To reveal if ALAN impacts coral physiology, we have studied two coral species, Acropora eurystoma and Pocillopora damicornis, from the Gulf of Eilat/Aqaba, Red Sea, which is undergoing urban development that has led to severe POL at night. Our two experimental design data revealed that corals exposed to ALAN face an oxidative stress condition, show lower photosynthesis performances measured by electron transport rate (ETR), as well as changes in chlorophyll and algae density parameters. Testing different lights such as Blue LED and White LED spectrum showed more extreme impact in comparison to Yellow LEDs on coral physiology. The finding of this work sheds light on the emerging threat of POL and the impacts on the biology and ecology of Scleractinian corals, and will help to formulate specific management implementations to mitigate its potentially harmful impacts.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral , Ecosistema , Océano Índico , Estrés Oxidativo , Fotosíntesis
6.
Environ Sci Technol ; 49(1): 301-8, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25471841

RESUMEN

In this Article, we demonstrate the influence of effluent particles (in the range of <50 µm) on ozone degradation of trace organic contaminants (TrOCs) and effluent-quality parameters. Secondary effluent was filtered through different pore-size filters and ozonated at various ozone doses. Degradation of both ozone-reactive and ozone-refractory contaminants improved following ozonation of effluent filtered with smaller pore size filters, indicating that particles in this range may adversely affect ozonation. The inhibitory effect of particles was attributed to their reaction with ozone, reducing available ozone and HO(•) radicals. In addition, increasing filtration level decreased the effluent's (instantaneous) ozone demand and increased removal of effluent UV absorbance (UVA254), further establishing that ozone reacts with effluent particles, in competition with dissolved matter. Moreover, ozone was shown to react with particles even during the first seconds of the process, suggesting a high rate of some ozone-particle reactions, comparable to ozone reaction with highly reactive dissolved organic matter moieties. Particle image analysis revealed that particle formation/aggregation and particle disintegration occurs simultaneously during wastewater (WW) ozonation. Our study implies that particles could affect the efficiency of WW ozonation, by increasing the effluent's ozone demand and decreasing contaminant degradation.


Asunto(s)
Compuestos Orgánicos/química , Ozono , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Filtración , Tamaño de la Partícula , Estaciones del Año
7.
Sci Total Environ ; 920: 170513, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38360314

RESUMEN

This study examines the impact of Artificial Light at Night (ALAN) on two coral species, Acropora eurystoma and Pocillopora damicornis, in the Gulf of Aqaba/Eilat Red Sea, assessing their natural isotopic responses to highlight changes in energy and nutrient sourcing due to sensory light pollution. Our findings indicate significant disturbances in photosynthetic processes in Acropora eurystoma, as evidenced by shifts in δ13C values under ALAN, pointing to alterations in carbon distribution or utilization. In Pocillopora damicornis, similar trends were observed, with changes in δ13C and δ15N values suggesting a disruption in its nitrogen cycle and feeding strategies. The study also uncovers species-specific variations in heterotrophic feeding, a crucial factor in coral resilience under environmental stress, contributing to the corals' fixed carbon budget. Light measurements across the Gulf demonstrated a gradient of light pollution which possess the potential of affecting marine biology in the region. ALAN was found to disrupt natural diurnal tentacle behaviors in both coral species, crucial for prey capture and nutrient acquisition, thereby impacting their isotopic composition and health. Echoing previous research, our study underscores the need to consider each species' ecological and physiological contexts when assessing the impacts of anthropogenic changes. The findings offer important insights into the complexities of marine ecosystems under environmental stress and highlight the urgency of developing effective mitigation strategies.


Asunto(s)
Antozoos , Animales , Nitrógeno , Ecosistema , Isótopos de Carbono , Contaminación Lumínica , Carbono , Arrecifes de Coral
8.
Front Bioeng Biotechnol ; 12: 1322985, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562667

RESUMEN

Eucalyptus covers approximately 7.5 million hectares in Brazil and serves as the primary woody species cultivated for commercial purposes. However, native insects and invasive pests pose a significant threat to eucalyptus trees, resulting in substantial economic losses and reduced forest productivity. One of the primary lepidopteran pests affecting eucalyptus is Thyrinteina arnobia (Stoll, 1782) (Lepidoptera: Geometridae), commonly referred to as the brown looper caterpillar. To address this issue, FuturaGene, the biotech division of Suzano S.A., has developed an insect-resistant (IR) eucalyptus variety, which expresses Cry pesticidal proteins (Cry1Ab, Cry1Bb, and Cry2Aa), derived from Bacillus thuringiensis (Bt). Following extensive safety assessments, including field trials across various biomes in Brazil, the Brazilian National Technical Commission of Biosafety (CTNBio) recently approved the commercialization of IR eucalyptus. The biosafety assessments involved the analysis of molecular genomics, digestibility, thermostability, non-target organism exposure, degradability in the field, and effects on soil microbial communities and arthropod communities. In addition, in silico studies were conducted to evaluate allergenicity and toxicity. Results from both laboratory and field studies indicated that Bt eucalyptus is as safe as the conventional eucalyptus clone for humans, animals, and the environment, ensuring the secure use of this insect-resistant trait in wood production.

9.
RSC Adv ; 13(6): 3416-3424, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36756580

RESUMEN

Inorganic oxide materials such as TiO2 and ZnO have been extensively studied for environmental remediation, that operates through photo generated Reactive Oxygen Species (ROS) such as H2O2, ·OH and O2 - to decontaminate waste water. However, inorganic solid oxidants such as metal peroxides capable of generating ROS in aqueous solutions have not been studied for environmental remediation. Towards this objective, we have synthesized peroxides of Zn, Mg, and Ba and characterized these by powder X-ray diffraction, Transmission Electron Microscopy, UV-visible spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic activity of these wide band gap semiconductors has also been investigated. The novelty of the work is in the use of these peroxides as chemical sources of ROS in aqueous suspensions in addition to their photochemical generation. Hence, these peroxides, in particular Ba, exhibit high photocatalytic activity, better than the well-known ZnO. The mechanisms of ROS generation and subsequent dye degradation are elucidated. ROS has been estimated and is correlated to the photocatalytic activity. This work reports for the first time BaO2 as potential photocatalyst.

10.
Environ Pollut ; 325: 121447, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36931490

RESUMEN

The atmospheric water generator (AWG) is a commercially available device that produces water from the air in large volumes over short times. This method can be applied in most regions of the world to solve chronic and acute drinking water scarcity. However, knowledge of the effects of air chemical composition on AWG-produced water quality is still very limited. In this study, a comprehensive survey of AWG-produced water quality was conducted in a heavily polluted industrial environment; 83 AWG water samples were analyzed for 99 different quality parameters, including organic, inorganic, and microbial contamination. Two parameters-nickel (15 samples) and dichloromethane (2 samples)-exceeded sporadically their drinking water standards of EPA, EU and IL. Ammonia was the only parameter consistently above standard limits of 0.5 mg/L (61% of samples, relevant to 47 countries) and even higher than 1.5 mg/L. Comparison to real air concentrations of volatile pollutants in the same environment did not reveal any significant correlations; while some pollutants were found at high concentrations in the air, this was not reflected by their presence in the produced water. The findings show that even in areas that are considered excessively polluted relative to the natural environment, the water produced from the air by AWG could be considered suitable for drinking, with careful attention to very specific contaminants.


Asunto(s)
Contaminación del Aire , Agua Potable , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Ambiente
11.
Front Bioeng Biotechnol ; 11: 1257576, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854879

RESUMEN

Eucalyptus comprises the largest planted area of cultivated production forest in Brazil. Genetic modification of eucalyptus can provide additional characteristics for increasing productivity, protecting plant yield, and potentially altering fiber for various industrial uses. With this objective, a transgenic eucalyptus variety, event H421, received regulatory approval for commercial release after 6 years of approved risk assessment studies by the Brazilian National Technical Biosafety Commission (CTNBio) in 2015, becoming the first approved genetically modified (GM) eucalyptus in the world. GM event H421 enables increased plant biomass accumulation through overexpression of the Arabidopsis 1,4-ß-endoglucanase Cel1, which remodels the xyloglucan-cellulose matrix of the cell wall during development to promote cell expansion and growth. As required, in that time, by the current normative from CTNBio, a post-commercial release monitoring plan for H421 was submitted, incorporating general surveillance for five consecutive years with the submission of annual reports. The monitoring plan was conducted on fields of H421 progenies, with conventional clones as comparators, cultivated in representative regions where eucalyptus is cultivated in the states of São Paulo, Bahia, and Maranhão, representing Southeast, Northeast, and Northern Brazil. Over the course of the five-year general surveillance monitoring plan for the approved GM eucalyptus H421, no adverse effect that could impact the biosafety of the commercially approved event was identified. Additionally, the GM eucalyptus exhibited behavior highly consistent with that of conventional commercial clones. Therefore, there was no need for an extra risk assessment study of a case-specific monitoring plan. The results show the importance of continuously updating the regulation norms of governmental agencies to align with scientific advances.

12.
GM Crops Food ; 14(1): 1-14, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37334790

RESUMEN

Glyphosate herbicide treatment is essential to sustainable Eucalyptus plantation management in Brazil. Eucalyptus is highly sensitive to glyphosate, and Suzano/FuturaGene has genetically modified eucalyptus to tolerate glyphosate, with the aim of both protecting eucalyptus trees from glyphosate application damage and improving weed management. This study presents the biosafety results of the glyphosate-tolerant eucalyptus event 751K032, which expresses the selection marker neomycin phosphotransferase II (NPTII) enzyme and CP4-EPSPS, a glyphosate-tolerant variant of plant 5-enolpyruvyl-shikimate-3-phosphate synthase enzyme. The transgenic genetically modified (GM) event 751K032 behaved in the plantations like conventional non-transgenic eucalyptus clone, FGN-K, and had no effects on arthropods and soil microorganisms. The engineered NPTII and CP4 EPSPS proteins were heat-labile, readily digestible, and according to the bioinformatics analyses, unlikely to cause an allergenic or toxic reaction in humans or animals. This assessment of the biosafety of the glyphosate-tolerant eucalyptus event 751K032 concludes that it is safe to be used for wood production.


Asunto(s)
Eucalyptus , Herbicidas , Animales , Humanos , Kanamicina Quinasa , Plantas Modificadas Genéticamente , Eucalyptus/genética , Herbicidas/toxicidad
13.
J Exp Bot ; 63(1): 241-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21914656

RESUMEN

It has recently been found that among the 17 Arabidopsis myosins, six (XIC, XIE, XIK, XI-I, MYA1, and MYA2) have a major role in the motility of Golgi bodies and mitochondria in Nicotiana benthamiana and Nicotiana tabacum. Here, the same dominant negative tail fragments were also found to arrest the movement of Gogi bodies when transiently expressed in Arabidopsis plants. However, when a Golgi marker was transiently expressed in plants knocked out in these myosins, its movement was dramatically inhibited only in the xik mutant. In addition, a tail fragment of myosin XIK could inhibit the movement of several post-Golgi organelles, such as the trans-Golgi network, pre-vacuolar compartment, and endosomes, as well as total cytoplasmic streaming, suggesting that myosin XIK is a major player in cytoplasm kinetics. However, no co-localization of myosin tails with the arrested organelles was observed. Several deletion truncations of the myosin XIK tail were generated to corroborate function with localization. All deletion mutants possessing an inhibitory effect on organelle movement exhibited a diffuse cytoplasmic distribution. Point mutations in the tail of myosin XIK revealed that Arg1368 and Arg1443 are essential for its activity. These residues correspond to Lys1706 and Lys1779 from mouse myosin Va, which mediate the inhibitory head-tail interaction in this myosin. Therefore, such an interaction might underlie the dominant negative effect of truncated plant myosin tails and explain the mislocalization with target organelles.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Arginina/genética , Citoplasma/fisiología , Miosinas/fisiología , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Western Blotting , Aparato de Golgi/metabolismo , Microscopía Fluorescente , Datos de Secuencia Molecular , Miosinas/química , Miosinas/genética , Hojas de la Planta/metabolismo , Mutación Puntual , Homología de Secuencia de Aminoácido
14.
Artículo en Inglés | MEDLINE | ID: mdl-22506702

RESUMEN

The Hula Nature Reserve (HNR) (0.3 km(2)) in northern Israel is a semiarid wetland ecosystem within the greater Hula Valley. In the 1950s, approximately 60 km(2) of wetlands were drained and converted to farmland. The HNR was established during this time to preserve some of the native flora and fauna. Agricultural runoff and a reflooding of the area with peat water in 1999 resulted in high sulfate (SO(4) (2-)) concentrations of 66.67 ± 4.00 mg/L. We identified the existence of SO(4) (2-), nitrate (NO(3) (-)), and ammonium (NH(4) (+)) nutrient gradients as well as related mechanisms affecting the growth and dieback of Cyperus papyrus. The observed changes in the C. papyrus populations were caused primarily by fluctuations in SO(4) (2-). After two key events that affected levels of SO(4) (2-) in the HNR, C. papyrus coverage was altered by more than 80%.


Asunto(s)
Ecosistema , Evolución Química , Fenómenos Fisiológicos de las Plantas , Humedales , Israel
15.
Chemosphere ; 308(Pt 2): 136399, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36099989

RESUMEN

We evaluated the removal capacity of a coupled microalgal-bacterial biofilm (CMBB) to eliminate three recalcitrant pharmaceuticals. The CMBB's efficiency, operating at different biofilm concentrations, with or without light, was compared and analyzed to correlate these parameters to pharmaceutical removal and their effect on the microorganism community. Removal rates changed with changing pharmaceutical and biofilm concentrations: higher biofilm concentrations presented higher removal. Removal of 82-94% venlafaxine and 18-51% carbamazepine was obtained with 5 days of CMBB treatment. No iohexol removal was observed. Light, microorganism composition, and dissolved oxygen concentration are essential parameters governing the removal of pharmaceuticals and ammonia. Chlorophyll concentration increased with time, even in the dark. Three bacterial phyla were dominant: Proteobacteria, Bacteroidetes and Firmicutes. The dominant eukaryotic supergroups were Archaeplastida, Excavata and SAR. A study of the microorganisms' community indicated that not only do the species in the biofilm play an important role; environment, concentration and interactions among them are also important. CMBB has the potential to provide low-cost and sustainable treatment for wastewater and recalcitrant pharmaceutical removal. The microenvironments on the biofilm created by the microalgae and bacteria improved treatment efficiency.


Asunto(s)
Microalgas , Aguas Residuales , Amoníaco , Bacterias , Biopelículas , Carbamazepina , Clorofila , Yohexol , Oxígeno , Preparaciones Farmacéuticas , Clorhidrato de Venlafaxina , Eliminación de Residuos Líquidos
16.
Environ Sci Pollut Res Int ; 28(11): 14199-14206, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33547606

RESUMEN

Hospital wastewaters contain high concentrations of pharmaceutical residues and other chemicals, and may present an important source for NDMA (N-nitrosodimethylamine) and its precursors in the aquatic environment. The present study evaluates the contribution of hospital wastewater to NDMA environmental load and identifies important sources within the hospital itself. For this purpose, wastewaters from five large hospitals in Israel were analyzed, and concentrations of NDMA were found in the range of 20.7-56.7 ng/L, which are similar to NDMA concentrations typically detected in domestic wastewater. The relative contribution of day surgery, oncology, laboratories, and central kitchen (in Sheba hospital) to the daily load of NDMA was calculated as 20.2%, 8.2%, 10%, and 43.2%, respectively. In addition, NDMA concentration in Sheba's mixed wastewater stream, measured throughout a complete working day, was highest at 14:00. This suggests the possible impact of lunchtime on NDMA concentration, and emphasizes the dominant contribution of central kitchen waste. Finally, formation potential of NDMA in the mixed stream was 7300 ng/L, in the upper range of domestic wastewater, but could be decreased by 70% during subsequent aerobic biological wastewater treatment.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Dimetilnitrosamina , Hospitales , Israel , Aguas Residuales , Contaminantes Químicos del Agua/análisis
17.
Front Physiol ; 12: 695083, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234696

RESUMEN

Artificial Light at Night, ALAN, is a major emerging issue in biodiversity conservation, which can negatively impact both terrestrial and marine environments. Therefore, it should be taken into serious consideration in strategic planning for urban development. While the lion's share of research has dealt with terrestrial organisms, only a handful of studies have focused on the marine milieu. To determine if ALAN impacts the coral reef symbiotic algae, that are fundamental for sustainable coral reefs, we conducted a short experiment over a period of one-month by illuminating isolated Symbiodiniaceae cell cultures from the genera Cladocopium (formerly Clade C) and Durusdinium (formerly Clade D) with LED light. Cell cultures were exposed nightly to ALAN levels of 0.15 µmol quanta m-2 s-1 (∼4-5 lux) with three light spectra: blue, yellow and white. Our findings showed that even in very low levels of light at night, the photo-physiology of the algae's Electron Transport Rate (ETR), Non-Photochemical Quenching, (NPQ), total chlorophyll, and meiotic index presented significantly lower values under ALAN, primarily, but not exclusively, in Cladocopium cell cultures. The findings also showed that diverse Symbiodiniaceae types have different photo-physiology and photosynthesis performances under ALAN. We believe that our results sound an alarm for the probable detrimental effects of an increasing sensory pollutant, ALAN, on the eco-physiology of symbiotic corals. The results of this study point to the potential effects of ALAN on other organisms in marine ecosystem such as fish, zooplankton, and phytoplankton in which their biorhythms is entrained by natural light and dark cycles.

18.
Materials (Basel) ; 14(20)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34683555

RESUMEN

Degradation of 17α-ethynylestradiol (EE2) and estrogenicity were examined in a novel oxidative bioreactor (OBR) that combines small bioreactor platform (SBP) capsules and UV-LED (ultraviolet light emission diode) simultaneously, using enriched water and secondary effluent. Preliminary experiments examined three UV-LED wavelengths-267, 279, and 286 nm, with (indirect photolysis) and without (direct photolysis) H2O2. The major degradation wavelength for both direct and indirect photolysis was 279 nm, while the major removal gap for direct vs. indirect degradation was at 267 nm. Reduction of EE2 was observed together with reduction of estrogenicity and mineralization, indicating that the EE2 degradation products are not estrogens. Furthermore, slight mineralization occurred with direct photolysis and more significant mineralization with the indirect process. The physical-biological OBR process showed major improvement over other processes studied here, at a very short hydraulic retention time. The OBR can feasibly replace the advanced oxidation process of UV-LED radiation with catalyst in secondary sedimentation tanks with respect to reduction ratio, and with no residual H2O2. Further research into this OBR system is warranted, not only for EE2 degradation, but also to determine its capabilities for degrading mixtures of pharmaceuticals and pesticides, both of which have a significant impact on the environment and public health.

19.
RSC Adv ; 11(30): 18617-18622, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35480917

RESUMEN

Solid-phase extraction (SPE) based on trimethylsilyloxy-modified silica aerogel was developed for extraction of chemotherapeutic drugs from water. The developed method is easy and affordable, can be performed in separating funnel and does not require a vacuum and SPE manifold. The extraction and recovery of cyclophosphamide (CYP), dexamethasone (DEX), and paclitaxel (TAX) by the aerogel from water were investigated. The factors governing the extraction efficiency such as sample pH, sample volume, volume of eluent and concentration of analytes were studied. The LOD and LOQ of the developed method were calculated and linearity was found in the range of 4-100 µg L-1. The extraction efficiency of the aerogel was compared to that of other SPE cartridges, Oasis HLB, Strata-X-C, C18 and polymeric reversed phase, and the aerogel showed similar or better performance than the other commercial cartridges available on the market. The developed method was also used to extract chemotherapeutic drugs spiked in hospital wastewater.

20.
Sci Total Environ ; 790: 147940, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34087736

RESUMEN

Atmospheric water is considered an alternative sustainable solution for global water scarcity. We analyzed the effects of meteorological and air-quality parameters on the chemical characteristics of atmospheric water. First, we measured the chemical characteristics of water produced by a unique atmospheric water generator (AWG) apparatus in Tel Aviv, Israel. To examine the complex air-water relationships, we obtained atmospheric data from several sources: adjacent air-quality-monitoring stations, aerosol robotic network (AERONET), aerosol pollution profile using PollyXT lidar, and air back-trajectory simulation (HYSPLIT). We found a strong impact of different pollution sources on the water quality. The integration between HYSPLIT, AERONET and lidar analyses shows that the pathway crossed by the air parcel three days before arrival at the site affected the chemical properties of the produced water. Nearby sea salt aerosols from the Mediterranean were persistently observed in the water (medians: sodium 69 µg/L, chloride ions 120 µg/L), corresponding to lidar identification of a sea-breeze layer (30-50 sr lidar ratio in lower elevation). Seasonal variability in climatic conditions affected the concentration of dust-related elements in the water. During dust-storm events, calcium was the most dominant element (median 900 µg/L). Thus, the chemical characteristics of the water can be considered a "footprint" of both regional, local, and phenological composition of the atmosphere.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Atmósfera , Monitoreo del Ambiente , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA