RESUMEN
The restoration of gait and mobility after stroke is an important and challenging therapy goal due to the complexity of the potentially impaired functions. As a result, precise and clinically feasible assessment methods are required for personalized gait rehabilitation after stroke. The aim of this study is to investigate the reliability and validity of a sensor-based gait analysis system in stroke survivors with different severities of gait deficits. For this purpose, 28 chronic stroke survivors (9 women, ages: 62.04 ± 11.68 years) with mild to moderate walking impairments performed a set of ambulatory assessments (3× 10MWT, 1× 6MWT per session) twice while being equipped with a sensor suit. The derived gait reports provided information about speed, step length, step width, swing and stance phases, as well as joint angles of the hip, knee, and ankle, which we analyzed for test-retest reliability and hypothesis testing. Further, test-retest reliability resulted in a mean ICC of 0.78 (range: 0.46-0.88) for walking 10 m and a mean ICC of 0.90 (range: 0.63-0.99) for walking 6 min. Additionally, all gait parameters showed moderate-to-strong correlations with clinical scales reflecting lower limb function. These results support the applicability of this sensor-based gait analysis system for individuals with stroke-related walking impairments.
Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Dispositivos Electrónicos Vestibles , Humanos , Femenino , Persona de Mediana Edad , Anciano , Análisis de la Marcha , Reproducibilidad de los Resultados , Marcha , CaminataRESUMEN
Spinal cord injury (SCI) patients suffer from diverse gait deficits depending on the severity of their injury. Gait assessments can objectively track the progress during rehabilitation and support clinical decision making, but a comprehensive gait analysis requires far more complex setups and time-consuming protocols that are not feasible in the daily clinical routine. As using inertial sensors for mobile gait analysis has started to gain ground, this work aimed to develop a sensor-based gait analysis for the specific population of SCI patients that measures the spatio-temporal parameters of typical gait laboratories for day-to-day clinical applications. The proposed algorithm uses shank-mounted inertial sensors and personalized thresholds to detect steps and gait events according to the individual gait profiles. The method was validated in nine SCI patients and 17 healthy controls walking on an instrumented treadmill while wearing reflective markers for motion capture used as a gold standard. The sensor-based algorithm (i) performed similarly well for the two cohorts and (ii) is robust enough to cover the diverse gait deficits of SCI patients, from slow (0.3 m/s) to preferred walking speeds.
Asunto(s)
Análisis de la Marcha , Traumatismos de la Médula Espinal , Algoritmos , Marcha , Humanos , Traumatismos de la Médula Espinal/diagnóstico , Caminata , Velocidad al CaminarRESUMEN
Background: Arm use metrics derived from wrist-mounted movement sensors are widely used to quantify the upper limb performance in real-life conditions of individuals with stroke throughout motor recovery. The calculation of real-world use metrics, such as arm use duration and laterality preferences, relies on accurately identifying functional movements. Hence, classifying upper limb activity into functional and non-functional classes is paramount. Acceleration thresholds are conventionally used to distinguish these classes. However, these methods are challenged by the high inter and intra-individual variability of movement patterns. In this study, we developed and validated a machine learning classifier for this task and compared it to methods using conventional and optimal thresholds. Methods: Individuals after stroke were video-recorded in their home environment performing semi-naturalistic daily tasks while wearing wrist-mounted inertial measurement units. Data were labeled frame-by-frame following the Taxonomy of Functional Upper Limb Motion definitions, excluding whole-body movements, and sequenced into 1-s epochs. Actigraph counts were computed, and an optimal threshold for functional movement was determined by receiver operating characteristic curve analyses on group and individual levels. A logistic regression classifier was trained on the same labels using time and frequency domain features. Performance measures were compared between all classification methods. Results: Video data (6.5 h) of 14 individuals with mild-to-severe upper limb impairment were labeled. Optimal activity count thresholds were ≥20.1 for the affected side and ≥38.6 for the unaffected side and showed high predictive power with an area under the curve (95% CI) of 0.88 (0.87,0.89) and 0.86 (0.85, 0.87), respectively. A classification accuracy of around 80% was equivalent to the optimal threshold and machine learning methods and outperformed the conventional threshold by â¼10%. Optimal thresholds and machine learning methods showed superior specificity (75-82%) to conventional thresholds (58-66%) across unilateral and bilateral activities. Conclusion: This work compares the validity of methods classifying stroke survivors' real-life arm activities measured by wrist-worn sensors excluding whole-body movements. The determined optimal thresholds and machine learning classifiers achieved an equivalent accuracy and higher specificity than conventional thresholds. Our open-sourced classifier or optimal thresholds should be used to specify the intensity and duration of arm use.
RESUMEN
Motion capture systems are widely accepted as ground-truth for gait analysis and are used for the validation of other gait analysis systems. To date, their reliability and limitations in manual labeling of gait events have not been studied. Objectives: Evaluate manual labeling uncertainty and introduce a hybrid stride detection and gait-event estimation model for autonomous, long-term, and remote monitoring. Methods: Estimate inter-labeler inconsistencies by computing the limits-of-agreement. Develop a hybrid model based on dynamic time warping and convolutional neural network to identify valid strides and eliminate non-stride data in inertial (walking) data collected by a wearable device. Finally, detect gait events within a valid stride region. Results: The limits of inter-labeler agreement for key gait events heel off, toe off, heel strike, and flat foot are 72, 16, 24, and 80 ms, respectively; The hybrid model's classification accuracy for stride and non-stride are 95.16 and 84.48%, respectively; The mean absolute error for detected heel off, toe off, heel strike, and flat foot are 24, 5, 9, and 13 ms, respectively, when compared to the average human labels. Conclusions: The results show the inherent labeling uncertainty and the limits of human gait labeling of motion capture data; The proposed hybrid-model's performance is comparable to that of human labelers, and it is a valid model to reliably detect strides and estimate the gait events in human gait data. Significance: This work establishes the foundation for fully automated human gait analysis systems with performances comparable to human-labelers.