Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Inherit Metab Dis ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973597

RESUMEN

The protein encoded by COQ7 is required for CoQ10 synthesis in humans, hydroxylating 3-demethoxyubiquinol (DMQ10) in the second to last steps of the pathway. COQ7 mutations lead to a primary CoQ10 deficiency syndrome associated with a pleiotropic neurological disorder. This study shows the clinical, physiological, and molecular characterization of four new cases of CoQ10 primary deficiency caused by five mutations in COQ7, three of which have not yet been described, inducing mitochondrial dysfunction in all patients. However, the specific combination of the identified variants in each patient generated precise pathophysiological and molecular alterations in fibroblasts, which would explain the differential in vitro response to supplementation therapy. Our results suggest that COQ7 dysfunction could be caused by specific structural changes that affect the interaction with COQ9 required for the DMQ10 presentation to COQ7, the substrate access to the active site, and the maintenance of the active site structure. Remarkably, patients' fibroblasts share transcriptional remodeling, supporting a modification of energy metabolism towards glycolysis, which could be an adaptive mechanism against CoQ10 deficiency. However, transcriptional analysis of mitochondria-associated pathways showed distinct and dramatic differences between patient fibroblasts, which correlated with the extent of pathophysiological and neurological alterations observed in the probands. Overall, this study suggests that the combination of precise genetic diagnostics and the availability of new structural models of human proteins could help explain the origin of phenotypic pleiotropy observed in some genetic diseases and the different responses to available therapies.

2.
Biol Lett ; 15(4): 20180835, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30966898

RESUMEN

It has been known for about a century that European eels have a unique life history that includes offshore spawning in the Sargasso Sea about 5000-7000 km away from their juvenile and adult habitats in Europe and northern Africa. Recently hatched eel larvae were historically collected during Danish, German and American surveys in specific areas in the southern Sargasso Sea. During a 31 day period of March and April 2014, Danish and German research ships sampled for European eel larvae along 15 alternating transects of stations across the Sargasso Sea. The collection of recently hatched eel larvae (≤12 mm) from 70° W and eastward to 50° W showed that the European eel had been spawning across a 2000 km wide region of the North Atlantic Ocean. Historical collections made from 1921 to 2007 showed that small larvae had also previously been collected in this wide longitudinal zone, showing that the spatial extent of spawning has not diminished in recent decades, irrespective of the dramatic decline in recruitment. The use of such a wide spawning area may be related to variations in the onset of the silver eel spawning migration, individual differences in their long-term swimming ability, or aspects of larval drift.


Asunto(s)
Anguilla , Migración Animal , África del Norte , Animales , Océano Atlántico , Europa (Continente)
3.
Stem Cells ; 35(7): 1687-1703, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28472853

RESUMEN

Coenzyme Q10 (CoQ10 ) plays a crucial role in mitochondria as an electron carrier within the mitochondrial respiratory chain (MRC) and is an essential antioxidant. Mutations in genes responsible for CoQ10 biosynthesis (COQ genes) cause primary CoQ10 deficiency, a rare and heterogeneous mitochondrial disorder with no clear genotype-phenotype association, mainly affecting tissues with high-energy demand including brain and skeletal muscle (SkM). Here, we report a four-year-old girl diagnosed with minor mental retardation and lethal rhabdomyolysis harboring a heterozygous mutation (c.483G > C (E161D)) in COQ4. The patient's fibroblasts showed a decrease in [CoQ10 ], CoQ10 biosynthesis, MRC activity affecting complexes I/II + III, and respiration defects. Bona fide induced pluripotent stem cell (iPSCs) lines carrying the COQ4 mutation (CQ4-iPSCs) were generated, characterized and genetically edited using the CRISPR-Cas9 system (CQ4ed -iPSCs). Extensive differentiation and metabolic assays of control-iPSCs, CQ4-iPSCs and CQ4ed -iPSCs demonstrated a genotype association, reproducing the disease phenotype. The COQ4 mutation in iPSC was associated with CoQ10 deficiency, metabolic dysfunction, and respiration defects. iPSC differentiation into SkM was compromised, and the resulting SkM also displayed respiration defects. Remarkably, iPSC differentiation in dopaminergic or motor neurons was unaffected. This study offers an unprecedented iPSC model recapitulating CoQ10 deficiency-associated functional and metabolic phenotypes caused by COQ4 mutation. Stem Cells 2017;35:1687-1703.


Asunto(s)
Ataxia/genética , Discapacidad Intelectual/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Debilidad Muscular/genética , Rabdomiólisis/genética , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Ataxia/enzimología , Ataxia/patología , Sistemas CRISPR-Cas , Diferenciación Celular , Preescolar , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Resultado Fatal , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Edición Génica/métodos , Expresión Génica , Genes Letales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Discapacidad Intelectual/enzimología , Discapacidad Intelectual/patología , Mitocondrias/enzimología , Mitocondrias/patología , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/deficiencia , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Debilidad Muscular/enzimología , Debilidad Muscular/patología , Cultivo Primario de Células , Rabdomiólisis/enzimología , Rabdomiólisis/patología , Ubiquinona/genética
4.
Biogerontology ; 19(6): 461-480, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30143941

RESUMEN

Mitochondria are key in the metabolism of aerobic organisms and in ageing progression and age-related diseases. Mitochondria are essential for obtaining ATP from glucose and fatty acids but also in many other essential functions in cells including aminoacids metabolism, pyridine synthesis, phospholipid modifications and calcium regulation. On the other hand, the activity of mitochondria is also the principal source of reactive oxygen species in cells. Ageing and chronic age-related diseases are associated with the deregulation of cell metabolism and dysfunction of mitochondria. Cell metabolism is controlled by three major nutritional sensors: mTOR, AMPK and Sirtuins. These factors control mitochondrial biogenesis and dynamics by regulating fusion, fission and turnover through mito- and autophagy. A complex interaction between the activity of these nutritional sensors, mitochondrial biogenesis rate and dynamics exists and affect ageing, age-related diseases including metabolic disease. Further, mitochondria maintain a constant communication with nucleus modulating gene expression and modifying epigenetics. In this review we highlight the importance of mitochondria in ageing and the repercussion in the progression of age-related diseases and metabolic disease.


Asunto(s)
Envejecimiento/metabolismo , Enfermedades Metabólicas/metabolismo , Mitocondrias/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Metabolismo Energético , Humanos , Ratones , Modelos Animales , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sirtuinas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
5.
RNA Biol ; 13(7): 622-34, 2016 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-26690054

RESUMEN

Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain carrying electrons from complexes I and II to complex III and it is an intrinsic component of the respirasome. CoQ concentration is highly regulated in cells in order to adapt the metabolism of the cell to challenges of nutrient availability and stress stimuli. At least 10 proteins have been shown to be required for CoQ biosynthesis in a multi-peptide complex and COQ7 is a central regulatory factor of this pathway. We found that the first 765 bp of the 3'-untranslated region (UTR) of COQ7 mRNA contains cis-acting elements of interaction with RNA-binding proteins (RBPs) HuR and hnRNP C1/C2. Binding of hnRNP C1/C2 to COQ7 mRNA was found to require the presence of HuR, and hnRNP C1/C2 silencing appeared to stabilize COQ7 mRNA modestly. By contrast, lowering HuR levels by silencing or depriving cells of serum destabilized and reduced the half-life of COQ7 mRNA, thereby reducing COQ7 protein and CoQ biosynthesis rate. Accordingly, HuR knockdown decreased oxygen consumption rate and mitochondrial production of ATP, and increased lactate levels. Taken together, our results indicate that a reduction in COQ7 mRNA levels by HuR depletion causes mitochondrial dysfunction and a switch toward an enhanced aerobic glycolysis, the characteristic phenotype exhibited by primary deficiency of CoQ10. Thus HuR contributes to efficient oxidative phosphorylation by regulating of CoQ10 biosynthesis.


Asunto(s)
Proteína 1 Similar a ELAV/metabolismo , Regulación de la Expresión Génica/fisiología , Fosforilación Oxidativa , Consumo de Oxígeno/fisiología , Ubiquinona/biosíntesis , Regiones no Traducidas 3'/fisiología , Proteína 1 Similar a ELAV/genética , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Humanos , Ubiquinona/genética
6.
J Vis Exp ; (180)2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35225269

RESUMEN

Most of the cell's energy is obtained through the degradation of glucose, fatty acids, and amino acids by different pathways that converge on the mitochondrial oxidative phosphorylation (OXPHOS) system, which is regulated in response to cellular demands. The lipid molecule Coenzyme Q (CoQ) is essential in this process by transferring electrons to complex III in the electron transport chain (ETC) through constant oxidation/reduction cycles. Mitochondria status and, ultimately, cellular health can be assessed by measuring ETC oxygen consumption using respirometric assays. These studies are typically performed in established or primary cell lines that have been cultured for several days. In both cases, the respiration parameters obtained may have deviated from normal physiological conditions in any given organ or tissue. Additionally, the intrinsic characteristics of cultured single fibers isolated from skeletal muscle impede this type of analysis. This paper presents an updated and detailed protocol for the analysis of respiration in freshly isolated mitochondria from mouse skeletal muscle. We also provide solutions to potential problems that could arise at any step of the process. The method presented here could be applied to compare oxygen consumption rates in diverse transgenic mouse models and study the mitochondrial response to drug treatments or other factors such as aging or sex. This is a feasible method to respond to crucial questions about mitochondrial bioenergetics metabolism and regulation.


Asunto(s)
Mitocondrias , Fosforilación Oxidativa , Animales , Metabolismo Energético , Ratones , Mitocondrias/metabolismo , Mitocondrias Musculares/química , Músculo Esquelético , Consumo de Oxígeno/fisiología
7.
Front Physiol ; 13: 898792, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35936917

RESUMEN

ADCK2 haploinsufficiency-mediated mitochondrial coenzyme Q deficiency in skeletal muscle causes mitochondrial myopathy associated with defects in beta-oxidation of fatty acids, aged-matched metabolic reprogramming, and defective physical performance. Calorie restriction has proven to increase lifespan and delay the onset of chronic diseases associated to aging. To study the possible treatment by food deprivation, heterozygous Adck2 knockout mice were fed under 40% calorie restriction (CR) and the phenotype was followed for 7 months. The overall glucose and fatty acids metabolism in muscle was restored in mutant mice to WT levels after CR. CR modulated the skeletal muscle metabolic profile of mutant mice, partially rescuing the profile of WT animals. The analysis of mitochondria isolated from skeletal muscle demonstrated that CR increased both CoQ levels and oxygen consumption rate (OCR) based on both glucose and fatty acids substrates, along with mitochondrial mass. The elevated aerobic metabolism fits with an increase of type IIa fibers, and a reduction of type IIx in mutant muscles, reaching WT levels. To further explore the effect of CR over muscle stem cells, satellite cells were isolated and induced to differentiate in culture media containing serum from animals in either ad libitum or CR diets for 72 h. Mutant cells showed slower differentiation alongside with decreased oxygen consumption. In vitro differentiation of mutant cells was increased under CR serum reaching levels of WT isolated cells, recovering respiration measured by OCR and partially beta-oxidation of fatty acids. The overall increase of skeletal muscle bioenergetics following CR intervention is paralleled with a physical activity improvement, with some increases in two and four limbs strength tests, and weights strength test. Running wheel activity was also partially improved in mutant mice under CR. These results demonstrate that CR intervention, which has been shown to improve age-associated physical and metabolic decline in WT mice, also recovers the defective aerobic metabolism and differentiation of skeletal muscle in mice caused by ADCK2 haploinsufficiency.

8.
Biofactors ; 47(4): 551-569, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33878238

RESUMEN

Coenzyme Q10 (CoQ10 ) deficiency is a rare disease characterized by a decreased accumulation of CoQ10 in cell membranes. Considering that CoQ10 synthesis and most of its functions are carried out in mitochondria, CoQ10 deficiency cases are usually considered a mitochondrial disease. A relevant feature of CoQ10 deficiency is that it is the only mitochondrial disease with a successful therapy available, the CoQ10 supplementation. Defects in components of the synthesis machinery caused by mutations in COQ genes generate the primary deficiency of CoQ10 . Mutations in genes that are not directly related to the synthesis machinery cause secondary deficiency. Cases of CoQ10 deficiency without genetic origin are also considered a secondary deficiency. Both types of deficiency can lead to similar clinical manifestations, but the knowledge about primary deficiency is deeper than secondary. However, secondary deficiency cases may be underestimated since many of their clinical manifestations are shared with other pathologies. This review shows the current state of secondary CoQ10 deficiency, which could be even more relevant than primary deficiency for clinical activity. The analysis covers the fundamental features of CoQ10 deficiency, which are necessary to understand the biological and clinical differences between primary and secondary CoQ10 deficiencies. Further, a more in-depth analysis of CoQ10 secondary deficiency was undertaken to consider its origins, introduce a new way of classification, and include aging as a form of secondary deficiency.


Asunto(s)
Envejecimiento/genética , Transferasas Alquil y Aril/genética , Ataxia/genética , GTP Fosfohidrolasas/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Debilidad Muscular/genética , Enfermedad de Niemann-Pick Tipo C/genética , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Envejecimiento/metabolismo , Transferasas Alquil y Aril/metabolismo , Animales , Ataxia/metabolismo , Ataxia/patología , Metabolismo Energético/genética , GTP Fosfohidrolasas/metabolismo , Regulación de la Expresión Génica , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/metabolismo , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Mutación , Proteína Niemann-Pick C1/genética , Proteína Niemann-Pick C1/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Enfermedad de Niemann-Pick Tipo C/patología , Transducción de Señal , Ubiquinona/genética , Ubiquinona/metabolismo
9.
Exp Gerontol ; 142: 111147, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33171276

RESUMEN

SARS-CoV-2 causes a severe pneumonia (COVID-19) that affects essentially elderly people. In COVID-19, macrophage infiltration into the lung causes a rapid and intense cytokine storm leading finally to a multi-organ failure and death. Comorbidities such as metabolic syndrome, obesity, type 2 diabetes, lung and cardiovascular diseases, all of them age-associated diseases, increase the severity and lethality of COVID-19. Mitochondrial dysfunction is one of the hallmarks of aging and COVID-19 risk factors. Dysfunctional mitochondria is associated with defective immunological response to viral infections and chronic inflammation. This review discuss how mitochondrial dysfunction is associated with defective immune response in aging and different age-related diseases, and with many of the comorbidities associated with poor prognosis in the progression of COVID-19. We suggest here that chronic inflammation caused by mitochondrial dysfunction is responsible of the explosive release of inflammatory cytokines causing severe pneumonia, multi-organ failure and finally death in COVID-19 patients. Preventive treatments based on therapies improving mitochondrial turnover, dynamics and activity would be essential to protect against COVID-19 severity.


Asunto(s)
Envejecimiento/inmunología , COVID-19/complicaciones , Mitocondrias/fisiología , SARS-CoV-2 , Animales , COVID-19/inmunología , COVID-19/mortalidad , Síndrome de Liberación de Citoquinas/etiología , Humanos , Inflamación/inmunología , Inflamación/fisiopatología , Ubiquinona/análogos & derivados , Ubiquinona/farmacología
10.
Sci Rep ; 9(1): 8891, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222051

RESUMEN

Marine snow aggregates represent heterogeneous agglomerates of dead and living organic matter. Composition is decisive for their sinking rates, and thereby for carbon flux to the deep sea. For oligotrophic oceans, information on aggregate composition is particularly sparse. To address this, the taxonomic composition of aggregates collected from the subtropical and oligotrophic Sargasso Sea (Atlantic Ocean) was characterized by 16S and 18S rRNA gene sequencing. Taxonomy assignment was aided by a collection of the contemporary plankton community consisting of 75 morphologically and genetically identified plankton specimens. The diverse rRNA gene reads of marine snow aggregates, not considering Trichodesmium puffs, were dominated by copepods (52%), cnidarians (21%), radiolarians (11%), and alveolates (8%), with sporadic contributions by cyanobacteria, suggesting a different aggregate composition than in eutrophic regions. Composition linked significantly with sampling location but not to any measured environmental parameters or plankton biomass composition. Nevertheless, indicator and network analyses identified key roles of a few rare taxa. This points to complex regulation of aggregate composition, conceivably affected by the environment and plankton characteristics. The extent to which this has implications for particle densities, and consequently for sinking rates and carbon sequestration in oligotrophic waters, needs further interrogation.


Asunto(s)
Cianobacterias/clasificación , Células Eucariotas , Biología Marina , Nieve , Océanos y Mares
11.
J Gerontol A Biol Sci Med Sci ; 74(12): 1835-1843, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-29945183

RESUMEN

Aging is a multifactorial process which affects all animals. Aging as a result of damage accumulation is the most accepted explanation but the proximal causes remain to be elucidated. There is also evidence indicating that aging has an important genetic component. Animal species age at different rates and specific signaling pathways, such as insulin/insulin-like growth factor, can regulate life span of individuals within a species by reprogramming cells in response to environmental changes. Here, we use an unbiased approach to identify novel factors that regulate life span in Drosophila melanogaster. We compare the transcriptome and metabolome of two wild-type strains used widely in aging research: short-lived Dahomey and long-lived Oregon R flies. We found that Dahomey flies carry several traits associated with short-lived individuals and species such as increased lipoxidative stress, decreased mitochondrial gene expression, and increased Target of Rapamycin signaling. Dahomey flies also have upregulated octopamine signaling known to stimulate foraging behavior. Accordingly, we present evidence that increased foraging behavior, under laboratory conditions where nutrients are in excess increases damage generation and accelerates aging. In summary, we have identified several new pathways, which influence longevity highlighting the contribution and importance of the genetic component of aging.


Asunto(s)
Envejecimiento/genética , Envejecimiento/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Animales , Expresión Génica , Longevidad/genética , Longevidad/fisiología , Metaboloma/genética , Metaboloma/fisiología , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Fenotipo , Transducción de Señal/genética , Transducción de Señal/fisiología , Transcriptoma/genética , Transcriptoma/fisiología
12.
J Clin Med ; 8(9)2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31480808

RESUMEN

Fatty acids and glucose are the main bioenergetic substrates in mammals. Impairment of mitochondrial fatty acid oxidation causes mitochondrial myopathy leading to decreased physical performance. Here, we report that haploinsufficiency of ADCK2, a member of the aarF domain-containing mitochondrial protein kinase family, in human is associated with liver dysfunction and severe mitochondrial myopathy with lipid droplets in skeletal muscle. In order to better understand the etiology of this rare disorder, we generated a heterozygous Adck2 knockout mouse model to perform in vivo and cellular studies using integrated analysis of physiological and omics data (transcriptomics-metabolomics). The data showed that Adck2+/- mice exhibited impaired fatty acid oxidation, liver dysfunction, and mitochondrial myopathy in skeletal muscle resulting in lower physical performance. Significant decrease in Coenzyme Q (CoQ) biosynthesis was observed and supplementation with CoQ partially rescued the phenotype both in the human subject and mouse model. These results indicate that ADCK2 is involved in organismal fatty acid metabolism and in CoQ biosynthesis in skeletal muscle. We propose that patients with isolated myopathies and myopathies involving lipid accumulation be tested for possible ADCK2 defect as they are likely to be responsive to CoQ supplementation.

13.
Sci Rep ; 8(1): 6156, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670123

RESUMEN

Limited insight into eel larvae feeding and diet prevents a holistic overview of the life-cycle of catadromous eels and an understanding of the ecological position of their early stages in marine waters. The present study evaluated the diet of larval European eel, Anguilla anguilla - a critically endangered species. Next-generation 18S rRNA gene sequencing data of Sargasso Sea eel larvae gut contents and marine snow aggregates was compared with a reference plankton database to assess the trophic relations of eel larvae. Gut contents of A. anguilla larvae were not well explained by the eukaryotic composition of marine snow aggregates; gut contents being dominated by gene sequences of Hydrozoa taxa (phylum Cnidaria), while snow aggregates were dominated by Crustacea taxa. Pronounced differences between gut contents and marine snow aggregates were also seen in the prokaryotic 16S rRNA gene composition. The findings, in concert with significant abundances of Hydrozoa in the study area, suggest that Hydrozoa plankton are important in the diet of A. anguilla larvae, and that consideration of these organisms would further our understanding of A. anguilla feeding strategies in the oligotrophic Sargasso Sea, which may be important for potential future rearing of A. anguilla larvae in captivity.


Asunto(s)
Anguilla/fisiología , Alimentación Animal , Plancton , Anguilla/clasificación , Animales , Larva , Océanos y Mares , ARN Ribosómico 16S
14.
Front Physiol ; 8: 428, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28701960

RESUMEN

Reactive Oxygen Species (ROS) can cause oxidative damage and have been proposed to be the main cause of aging and age-related diseases including cancer, diabetes and Parkinson's disease. Accordingly, mitochondria from old individuals have higher levels of ROS. However, ROS also participate in cellular signaling, are instrumental for several physiological processes and boosting ROS levels in model organisms extends lifespan. The current consensus is that low levels of ROS are beneficial, facilitating adaptation to stress via signaling, whereas high levels of ROS are deleterious because they trigger oxidative stress. Based on this model the amount of ROS should determine the physiological effect. However, recent data suggests that the site at which ROS are generated is also instrumental in determining effects on cellular homeostasis. The best example of site-specific ROS signaling is reverse electron transport (RET). RET is produced when electrons from ubiquinol are transferred back to respiratory complex I, reducing NAD+ to NADH. This process generates a significant amount of ROS. RET has been shown to be instrumental for the activation of macrophages in response to bacterial infection, re-organization of the electron transport chain in response to changes in energy supply and adaptation of the carotid body to changes in oxygen levels. In Drosophila melanogaster, stimulating RET extends lifespan. Here, we review what is known about RET, as an example of site-specific ROS signaling, and its implications for the field of redox biology.

15.
J Clin Med ; 6(3)2017 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-28273876

RESUMEN

Coenzyme Q10 (CoQ10) deficiency syndrome includes clinically heterogeneous mitochondrial diseases that show a variety of severe and debilitating symptoms. A multiprotein complex encoded by nuclear genes carries out CoQ10 biosynthesis. Mutations in any of these genes are responsible for the primary CoQ10 deficiency, but there are also different conditions that induce secondary CoQ10 deficiency including mitochondrial DNA (mtDNA) depletion and mutations in genes involved in the fatty acid ß-oxidation pathway. The diagnosis of CoQ10 deficiencies is determined by the decrease of its content in skeletal muscle and/or dermal skin fibroblasts. Dietary CoQ10 supplementation is the only available treatment for these deficiencies that require a rapid and distinct diagnosis. Here we review methods for determining CoQ10 content by HPLC separation and identification using alternative approaches including electrochemical detection and mass spectrometry. Also, we review procedures to determine the CoQ10 biosynthesis rate using labeled precursors.

16.
Biochim Biophys Acta ; 1713(2): 129-37, 2005 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-15993380

RESUMEN

Coenzyme Q (Q) is an essential factor in the mitochondrial electron chain but also exerts important antioxidant functions in the rest of cell membranes of aerobic organisms. However, the mechanisms of distribution of Q among cell membranes are largely unclear. The aim of the present work is to study the mechanisms of distribution of endogenous Q(10) and exogenous Q(9) among cell membranes in human HL-60 cells. Endogenous Q(10) synthesized using the radiolabelled precursor [(14)C]-pHB was first detected in mitochondria, and it was later incorporated into mitochondria-associated membranes and endoplasmic reticulum (ER). Plasma membrane was the last location to incorporate [(14)C]-Q(10). Brefeldin A prevented Q(10) incorporation in plasma membrane. Exogenous Q(9) was preferably accumulated into the endo-lysosomal fraction but a significant amount was distributed among other cell membranes also depending on the brefeldin-A-sensitive endomembrane system. Our results indicate that mitochondria are the first location for new synthesized Q. Exogenous Q is mainly incorporated into an endo-lysosomal fraction, which is then rapidly incorporated to cell membranes mainly to MAM and mitochondria. We also demonstrate that both endogenous and dietary Q is distributed among endomembranes and plasma membrane by the brefeldin A-sensitive endo-exocytic pathway.


Asunto(s)
Membrana Celular/metabolismo , Ubiquinona/biosíntesis , Antioxidantes/farmacología , Western Blotting , Brefeldino A/farmacología , Línea Celular Tumoral , Centrifugación por Gradiente de Densidad , Transporte de Electrón , Células HL-60 , Humanos , Lisosomas/metabolismo , Mitocondrias/metabolismo , Oxígeno/química , Prohibitinas , Unión Proteica , Fracciones Subcelulares , Sacarosa/farmacología , Factores de Tiempo , Ubiquinona/química
17.
Biochim Biophys Acta ; 1706(1-2): 174-83, 2005 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-15620378

RESUMEN

Coenzyme Q (Q) is an obligatory component of both respiratory chain and uncoupling proteins. Also, Q acts as an antioxidant in cellular membranes. Several neurodegenerative diseases are associated with modifications of Q10 levels. For these reasons, therapies based on Q supplementation in the diet are currently studied in order to mitigate the symptoms of these diseases. However, the incorporation of exogenous Q also affects aging process in nematodes probably affecting reactive oxygen species (ROS) production. The aim of the present work is to clarify if supplementation with both Q10 and Q6 isoforms affects mitochondrial Q10 content, respiratory chain activity and ROS levels in human cells. Cells incorporated exogenously added Q10 and Q6 isoforms into mitochondria that produced changes in mitochondrial activity depending on the side chain length. Supplementation with Q10, but not with Q6, increased mitochondrial Q-dependent activities. However, Q6 affected the mitochondrial membrane potential, ROS production, and increased the protein levels of both catalase and Mn-superoxide dismutase (Mn-SOD). Also, Q6 induced a transient decrease in endogenous mitochondrial Q10 levels by increasing its catabolism. These results show that human cells supplemented with Q6 undergo a mitochondrial impairment, which is not observed with Q10 supplementation.


Asunto(s)
Mitocondrias/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/biosíntesis , Ubiquinona/metabolismo , Fraccionamiento Celular , Coenzimas , Transporte de Electrón/efectos de los fármacos , Transporte de Electrón/fisiología , Citometría de Flujo , Fluorescencia , Células HL-60 , Humanos , Isoenzimas , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Especificidad por Sustrato , Ubiquinona/farmacología
18.
Free Radic Biol Med ; 40(8): 1293-302, 2006 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-16631519

RESUMEN

Free radicals have been implicated in the action of many chemotherapeutic drugs. Here we tested the hypothesis that camptothecin and other chemotherapeutic drugs, such as etoposide, doxorubicin, and methotrexate, induce an increase in coenzyme Q(10) levels as part of the antioxidant defense against free radical production under these anticancer treatments in cancer cell lines. Chemotherapy treatment induced both free radical production and an increase in coenzyme Q(10) levels in all the cancer cell lines tested. Reduced coenzyme Q(10) form levels were particularly enhanced. Coenzyme Q(10)-increased levels were associated with up-regulation of COQ genes expression, involved in coenzyme Q(10) biosynthesis. At the translational level, COQ7 protein expression levels were also increased. Furthermore, coenzyme Q(10) biosynthesis inhibition blocked camptothecin-induced coenzyme Q(10) increase, and enhanced camptothecin cytotoxicity. Our findings suggest that coenzyme Q(10) increase is implicated in the cellular defense under chemotherapy treatment and may contribute to cell survival.


Asunto(s)
Antineoplásicos/farmacología , Camptotecina/farmacología , Ubiquinona/análogos & derivados , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Camptotecina/toxicidad , Línea Celular Tumoral , Coenzimas , Radicales Libres/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Oxidación-Reducción/efectos de los fármacos , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Ubiquinona/biosíntesis , Regulación hacia Arriba/efectos de los fármacos
19.
Biochim Biophys Acta ; 1659(2-3): 190-6, 2004 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-15576051

RESUMEN

The Drosophila mutant technical knockout (tko), affecting the mitochondrial protein synthetic apparatus, exhibits respiratory chain deficiency and a phenotype resembling various features of mitochondrial disease in humans (paralytic seizures, deafness, developmental retardation). We are using this mutant to analyse the cellular and genomic targets of mitochondrial dysfunction, and to identify ways in which the phenotype can be alleviated. Transgenic expression of wild-type tko in different patterns in the mutant background reveals critical times and cell-types for production of components of the mitochondrial disease-like phenotype. Mitochondrial bioenergy deficit during the period of maximal growth, as well as in specific parts of the nervous system, appears to be most deleterious. Inbreeding of tko mutant lines results in a systematic improvement in all phenotypic parameters tested. The resulting sub-lines can be used for genetic mapping and transcriptomic analysis, revealing clues as to the genes and pathways that can modify mitochondrial disease-like phenotypes in a model metazoan.


Asunto(s)
Drosophila/genética , Enfermedades Mitocondriales/etiología , Animales , Modelos Animales de Enfermedad , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/fisiopatología , Mutación , Fenotipo , Transcripción Genética
20.
Mol Syndromol ; 5(3-4): 170-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25126050

RESUMEN

The human syndrome of coenzyme Q (CoQ) deficiency is a heterogeneous mitochondrial disease characterized by a diminution of CoQ content in cells and tissues that affects all the electron transport processes CoQ is responsible for, like the electron transference in mitochondria for respiration and ATP production and the antioxidant capacity that it exerts in membranes and lipoproteins. Supplementation with external CoQ is the main attempt to address these pathologies, but quite variable results have been obtained ranging from little response to a dramatic recovery. Here, we present the importance of modeling human CoQ deficiencies in animal models to understand the genetics and the pathology of this disease, although the election of an organism is crucial and can sometimes be controversial. Bacteria and yeast harboring mutations that lead to CoQ deficiency are unable to grow if they have to respire but develop without any problems on media with fermentable carbon sources. The complete lack of CoQ in mammals causes embryonic lethality, whereas other mutations produce tissue-specific diseases as in humans. However, working with transgenic mammals is time and cost intensive, with no assurance of obtaining results. Caenorhabditis elegans and Drosophila melanogaster have been used for years as organisms to study embryonic development, biogenesis, degenerative pathologies, and aging because of the genetic facilities and the speed of working with these animal models. In this review, we summarize several attempts to model reliable human CoQ deficiencies in invertebrates, focusing on mutant phenotypes pretty similar to those observed in human patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA