RESUMEN
The ecological role of heritable phenotypic variation in free-living populations remains largely unknown. Knowledge of the genetic basis of functional ecological processes can link genomic and phenotypic diversity, providing insight into polymorphism evolution and how populations respond to environmental changes. By quantifying the marine diet of Atlantic salmon, we assessed how foraging behaviour changes along the ontogeny, and in relation to genetic variation in two loci with major effects on age at maturity (six6 and vgll3). We used a two-component, zero-inflated negative binomial model to simultaneously quantify foraging frequency and foraging outcome, separately for fish and crustaceans diets. We found that older salmon forage for both prey types more actively (as evidenced by increased foraging frequency), but with a decreased efficiency (as evidenced by fewer prey in the diet), suggesting an age-dependent shift in foraging dynamics. The vgll3 locus was linked to age-dependent changes in foraging behaviour: Younger salmon with vgll3LL (the genotype associated with late maturation) tended to forage crustaceans more often than those with vgll3EE (the genotype associated with early maturation), whereas the pattern was reversed in older salmon. Vgll3 LL genotype was also linked to a marginal increase in fish acquisition, especially in younger salmon, while six6 was not a factor explaining the diet variation. Our results suggest a functional role for marine feeding behaviour linking genomic diversity at vgll3 with age at maturity among salmon, with potential age-dependent trade-offs maintaining the genetic variation. A shared genetic basis between dietary ecology and age at maturity likely subjects Atlantic salmon populations to evolution induced by bottom-up changes in marine productivity.
Asunto(s)
Genotipo , Salmo salar , Animales , Salmo salar/genética , Variación Genética , Dieta , Conducta AlimentariaRESUMEN
A major goal in biology is to understand how evolution shapes variation in individual life histories. Genome-wide association studies have been successful in uncovering genome regions linked with traits underlying life history variation in a range of species. However, lack of functional studies of the discovered genotype-phenotype associations severely restrains our understanding how alternative life history traits evolved and are mediated at the molecular level. Here, we report a cis-regulatory mechanism whereby expression of alternative isoforms of the transcription co-factor vestigial-like 3 (vgll3) associate with variation in a key life history trait, age at maturity, in Atlantic salmon (Salmo salar). Using a common-garden experiment, we first show that vgll3 genotype associates with puberty timing in one-year-old salmon males. By way of temporal sampling of vgll3 expression in ten tissues across the first year of salmon development, we identify a pubertal transition in vgll3 expression where maturation coincided with a 66% reduction in testicular vgll3 expression. The late maturation allele was not only associated with a tendency to delay puberty, but also with expression of a rare transcript isoform of vgll3 pre-puberty. By comparing absolute vgll3 mRNA copies in heterozygotes we show that the expression difference between the early and late maturity alleles is largely cis-regulatory. We propose a model whereby expression of a rare isoform from the late allele shifts the liability of its carriers towards delaying puberty. These results exemplify the potential importance of regulatory differences as a mechanism for the evolution of life history traits.
Asunto(s)
Proteínas de Peces/genética , Regulación del Desarrollo de la Expresión Génica , Secuencias Reguladoras de Ácido Ribonucleico , Salmo salar/fisiología , Factores de Transcripción/metabolismo , Alelos , Empalme Alternativo , Animales , Exones , Femenino , Genotipo , Rasgos de la Historia de Vida , Masculino , Isoformas de Proteínas/genética , Salmo salar/genética , Salmo salar/crecimiento & desarrollo , Maduración Sexual , Testículo/crecimiento & desarrollo , Factores de Transcripción/genéticaRESUMEN
A better understanding of the genetic and phenotypic architecture underlying life-history variation is a longstanding aim in biology. Theories suggest energy metabolism determines life-history variation by modulating resource acquisition and allocation trade-offs, but the genetic underpinnings of the relationship and its dependence on ecological conditions have rarely been demonstrated. The strong genetic determination of age-at-maturity by two unlinked genomic regions (vgll3 and six6) makes Atlantic salmon (Salmo salar) an ideal model to address these questions. Using more than 250 juveniles in common garden conditions, we quantified the covariation between metabolic phenotypes-standard and maximum metabolic rates (SMR and MMR), and aerobic scope (AS)-and the life-history genomic regions, and tested if food availability modulates the relationships. We found that the early maturation genotype in vgll3 was associated with higher MMR and consequently AS. Additionally, MMR exhibited physiological epistasis; it was decreased when late maturation genotypes co-occurred in both genomic regions. Contrary to our expectation, the life-history genotypes had no effects on SMR. Furthermore, food availability had no effect on the genetic covariation, suggesting a lack of genotype-by-environment interactions. Our results provide insights on the key organismal processes that link energy use at the juvenile stage to age-at-maturity, indicating potential mechanisms by which metabolism and life-history can coevolve.
Asunto(s)
Rasgos de la Historia de Vida , Salmo salar , Animales , Genoma , Genotipo , Fenotipo , Salmo salar/genética , Factores de Transcripción/genéticaRESUMEN
Efforts to understand the genetic underpinnings of phenotypic variation are becoming more and more frequent in molecular ecology. Such efforts often lead to the identification of candidate regions showing signals of association and/or selection. These regions may contain multiple genes and therefore validation of which genes are actually responsible for the signal is required. In Atlantic salmon (Salmo salar), a large-effect locus for maturation timing, an ecologically important trait, occurs in a genomic region including two genes, vgll3 and akap11, but data for clearly determining which of the genes (or both) contribute to the association have been lacking. Here, we take advantage of natural recombination events detected between the two candidate genes in a salmon broodstock to reduce linkage disequilibrium at the locus, thus enabling delineation of the influence of variation at these two genes on early maturation. By rearing 5,895 males to maturation age, of which 81% had recombinant vgll3/akap11 allelic combinations, we found that vgll3 single nucleotide polymorphism (SNP) variation was strongly associated with early maturation, whereas there was little or no association between akap11 SNP variation and early maturation. These findings provide strong evidence supporting vgll3 as the primary candidate gene in the chromosome 25 locus for influencing early maturation. This will help guide future research for understanding the genetic processes controlling early maturation. This also exemplifies the utility of natural recombinants to more precisely map causal variation underlying ecologically important phenotypic diversity.
Asunto(s)
Polimorfismo de Nucleótido Simple , Salmo salar , Alelos , Animales , Genómica , Genotipo , Masculino , Polimorfismo de Nucleótido Simple/genética , Salmo salar/genéticaRESUMEN
Sexual maturation timing is a life-history trait central to the balance between mortality and reproduction. Maturation may be triggered when an underlying compound trait, called liability, exceeds a threshold. In many different species and especially fishes, this liability is approximated by growth and body condition. However, environmental vs. genetic contributions either directly or via growth and body condition to maturation timing remain unclear. Uncertainty exists also because the maturation process can reverse this causality and itself affect growth and body condition. In addition, disentangling the contributions of polygenic and major loci can be important. In many fishes, males mature before females, enabling the study of associations between male maturation and maturation-unbiased female liability traits. Using 40 Atlantic salmon families, longitudinal common-garden experimentation, and quantitative genetic analyses, we disentangled environmental from polygenic and major locus (vgll3) effects on male maturation, and sex-specific growth and condition. We detected polygenic heritabilities for maturation, growth, and body condition, and vgll3 effects on maturation and body condition but not on growth. Longitudinal patterns for sex-specific phenotypic liability, and for genetic variances and correlations between sexes suggested that early growth and condition indeed positively affected maturation initiation. However, towards spawning time, causality appeared reversed for males whereby maturation affected growth negatively and condition positively via both the environmental and genetic effects. Altogether, the results indicate that growth and condition are useful traits to study liability for maturation initiation, but only until maturation alters their expression, and that vgll3 contributes to maturation initiation via condition.
Asunto(s)
Rasgos de la Historia de Vida , Salmo salar , Animales , Femenino , Humanos , Masculino , Fenotipo , Reproducción , Salmo salar/genética , Maduración Sexual/genética , Factores de Transcripción/genéticaRESUMEN
Understanding the genetic basis of repeated evolution of the same phenotype across taxa is a fundamental aim in evolutionary biology and has applications in conservation and management. However, the extent to which interspecific life-history trait polymorphisms share evolutionary pathways remains underexplored. Here, we address this gap by studying the genetic basis of a key life-history trait, age at maturity, in four species of Pacific salmonids (genus Oncorhynchus) that exhibit intra- and interspecific variation in this trait-Chinook Salmon, Coho Salmon, Sockeye Salmon, and Steelhead Trout. We tested for associations in all four species between age at maturity and two genome regions, six6 and vgll3, that are strongly associated with the same trait in Atlantic Salmon (Salmo salar). We also conducted a genome-wide association analysis in Steelhead to assess whether additional regions were associated with this trait. We found the genetic basis of age at maturity to be heterogeneous across salmonid species. Significant associations between six6 and age at maturity were observed in two of the four species, Sockeye and Steelhead, with the association in Steelhead being particularly strong in both sexes (p = 4.46 × 10-9 after adjusting for genomic inflation). However, no significant associations were detected between age at maturity and the vgll3 genome region in any of the species, despite its strong association with the same trait in Atlantic Salmon. We discuss possible explanations for the heterogeneous nature of the genetic architecture of this key life-history trait, as well as the implications of our findings for conservation and management.
Asunto(s)
Rasgos de la Historia de Vida , Salmo salar , Animales , Femenino , Genoma , Estudio de Asociación del Genoma Completo , Genómica , Masculino , Fenotipo , Salmo salar/genéticaRESUMEN
Males and females share many traits that have a common genetic basis; however, selection on these traits often differs between the sexes, leading to sexual conflict. Under such sexual antagonism, theory predicts the evolution of genetic architectures that resolve this sexual conflict. Yet, despite intense theoretical and empirical interest, the specific loci underlying sexually antagonistic phenotypes have rarely been identified, limiting our understanding of how sexual conflict impacts genome evolution and the maintenance of genetic diversity. Here we identify a large effect locus controlling age at maturity in Atlantic salmon (Salmo salar), an important fitness trait in which selection favours earlier maturation in males than females, and show it is a clear example of sex-dependent dominance that reduces intralocus sexual conflict and maintains adaptive variation in wild populations. Using high-density single nucleotide polymorphism data across 57 wild populations and whole genome re-sequencing, we find that the vestigial-like family member 3 gene (VGLL3) exhibits sex-dependent dominance in salmon, promoting earlier and later maturation in males and females, respectively. VGLL3, an adiposity regulator associated with size and age at maturity in humans, explained 39% of phenotypic variation, an unexpectedly large proportion for what is usually considered a highly polygenic trait. Such large effects are predicted under balancing selection from either sexually antagonistic or spatially varying selection. Our results provide the first empirical example of dominance reversal allowing greater optimization of phenotypes within each sex, contributing to the resolution of sexual conflict in a major and widespread evolutionary trade-off between age and size at maturity. They also provide key empirical evidence for how variation in reproductive strategies can be maintained over large geographical scales. We anticipate these findings will have a substantial impact on population management in a range of harvested species where trends towards earlier maturation have been observed.
Asunto(s)
Envejecimiento/genética , Tamaño Corporal/genética , Proteínas de Peces/genética , Variación Genética/genética , Crecimiento/genética , Salmo salar/genética , Caracteres Sexuales , Animales , Evolución Biológica , Femenino , Proteínas de Peces/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Modelos Biológicos , Fenotipo , Reproducción/genética , Reproducción/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
The release of captive-bred animals into the wild is commonly practised to restore or supplement wild populations but comes with a suite of ecological and genetic consequences. Vast numbers of hatchery-reared fish are released annually, ostensibly to restore/enhance wild populations or provide greater angling returns. While previous studies have shown that captive-bred fish perform poorly in the wild relative to wild-bred conspecifics, few have measured individual lifetime reproductive success (LRS) and how this affects population productivity. Here, we analyse data on Atlantic salmon from an intensely studied catchment into which varying numbers of captive-bred fish have escaped/been released and potentially bred over several decades. Using a molecular pedigree, we demonstrate that, on average, the LRS of captive-bred individuals was only 36% that of wild-bred individuals. A significant LRS difference remained after excluding individuals that left no surviving offspring, some of which might have simply failed to spawn, consistent with transgenerational effects on offspring survival. The annual productivity of the mixed population (wild-bred plus captive-bred) was lower in years where captive-bred fish comprised a greater fraction of potential spawners. These results bolster previous empirical and theoretical findings that intentional stocking, or non-intentional escapees, threaten, rather than enhance, recipient natural populations.
Asunto(s)
Explotaciones Pesqueras , Salmo salar/fisiología , Animales , Animales Salvajes , Acuicultura , Cruzamiento , ReproducciónRESUMEN
Animals employ various foraging strategies along their ontogeny to acquire energy, and with varying degree of efficiencies, to support growth, maturation and subsequent reproduction events. Individuals that can efficiently acquire energy early are more likely to mature at an earlier age, as a result of faster energy gain which can fuel maturation and reproduction. We aimed to test the hypothesis that heritable resource acquisition variation that covaries with efficiency along the ontogeny would influence maturation timing of individuals. To test this hypothesis, we utilized Atlantic salmon as a model which exhibits a simple, hence trackable, genetic control of maturation age. We then monitored the variation in diet acquisition (quantified as stomach fullness and composition) of individuals with different ages, and linked it with genomic regions (haploblocks) that were previously identified to be associated with age-at-maturity. Consistent with the hypothesis, we demonstrated that one of the life-history genomic regions tested (six6) was indeed associated with age-dependent differences in stomach fullness. Prey composition was marginally linked to six6, and suggestively (but non-significantly) to vgll3 genomic regions. We further showed Atlantic salmon switched to the so-called 'feast and famine' strategy along the ontogeny, where older age groups exhibited heavier stomach content, but that came at the expense of running on empty more often. These results suggest genetic variation underlying resource utilization may explain the genetic basis of age structure in Atlantic salmon. Given that ontogenetic diet has a genetic component and the strong spatial diversity associated with these genomic regions, we predict populations with diverse maturation age will have diverse evolutionary responses to future changes in marine food web structures.
Asunto(s)
Salmo salar , Animales , Evolución Biológica , Dieta/veterinaria , Genómica , Reproducción , Salmo salar/genéticaRESUMEN
Co-inheritance in life-history traits may result in unpredictable evolutionary trajectories if not accounted for in life-history models. Iteroparity (the reproductive strategy of reproducing more than once) in Atlantic salmon (Salmo salar) is a fitness trait with substantial variation within and among populations. In the Teno River in northern Europe, iteroparous individuals constitute an important component of many populations and have experienced a sharp increase in abundance in the last 20 years, partly overlapping with a general decrease in age structure. The physiological basis of iteroparity bears similarities to that of age at first maturity, another life-history trait with substantial fitness effects in salmon. Sea age at maturity in Atlantic salmon is controlled by a major locus around the vgll3 gene, and we used this opportunity demonstrate that these two traits are co-inherited around this genome region. The odds ratio of survival until second reproduction was up to 2.4 (1.8-3.5 90% CI) times higher for fish with the early-maturing vgll3 genotype (EE) compared to fish with the late-maturing genotype (LL). The L allele was dominant in individuals remaining only one year at sea before maturation, but the dominance was reversed, with the E allele being dominant in individuals maturing after two or more years at sea. Post hoc analysis indicated that iteroparous fish with the EE genotype had accelerated growth prior to first reproduction compared to first-time spawners, across all age groups, whereas this effect was not detected in fish with the LL genotype. These results broaden the functional link around the vgll3 genome region and help us understand constraints in the evolution of life-history variation in salmon. Our results further highlight the need to account for genetic correlations between fitness traits when predicting demographic changes in changing environments.
Asunto(s)
Reproducción/genética , Salmo salar/genética , Maduración Sexual/genética , Factores de Transcripción/genética , Animales , Genotipo , Rasgos de la Historia de VidaRESUMEN
Despite decades of research assessing the genetic structure of natural populations, the biological meaning of low yet significant genetic divergence often remains unclear due to a lack of associated phenotypic and ecological information. At the same time, structured populations with low genetic divergence and overlapping boundaries can potentially provide excellent models to study adaptation and reproductive isolation in cases where high-resolution genetic markers and relevant phenotypic and life history information are available. Here, we combined single nucleotide polymorphism (SNP)-based population inference with extensive phenotypic and life history data to identify potential biological mechanisms driving fine-scale subpopulation differentiation in Atlantic salmon (Salmo salar) from the Teno River, a major salmon river in Europe. Two sympatrically occurring subpopulations had low but significant genetic differentiation (FST = 0.018) and displayed marked differences in the distribution of life history strategies, including variation in juvenile growth rate, age at maturity and size within age classes. Large, late-maturing individuals were virtually absent from one of the two subpopulations, and there were significant differences in juvenile growth rates and size at age after oceanic migration between individuals in the respective subpopulations. Our findings suggest that different evolutionary processes affect each subpopulation and that hybridization and subsequent selection may maintain low genetic differentiation without hindering adaptive divergence.
Asunto(s)
Variación Genética , Genética de Población , Salmo salar/genética , Adaptación Fisiológica/genética , Animales , Teorema de Bayes , Finlandia , Flujo Génico , Noruega , Fenotipo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADNRESUMEN
Declining trends in the abundance of many fish urgently call for more efficient and informative monitoring methods that would provide necessary demographic data for the evaluation of existing conservation, restoration, and management actions. We investigated how genetic sibship reconstruction from young-of-the-year brown trout (Salmo trutta L.) juveniles provides valuable, complementary demographic information that allowed us to disentangle the effects of habitat quality and number of breeders on juvenile density. We studied restored (n = 15) and control (n = 15) spawning and nursery habitats in 16 brown trout rivers and streams over 2 consecutive years to evaluate the effectiveness of habitat restoration activities. Similar juvenile densities both in restored and control spawning and nursery grounds were observed. Similarly, no differences in the effective number of breeders, Nb(SA) , were detected between habitats, indicating that brown trout readily used recently restored spawning grounds. Only a weak relationship between the Nb(SA) and juvenile density was observed, suggesting that multiple factors affect juvenile abundance. In some areas, very low estimates of Nb(SA) were found at sites with high juvenile density, indicating that a small number of breeders can produce a high number of progeny in favorable conditions. In other sites, high Nb(SA) estimates were associated with low juvenile density, suggesting low habitat quality or lack of suitable spawning substrate in relation to available breeders. Based on these results, we recommend the incorporation of genetic sibship reconstruction to ongoing and future fish evaluation and monitoring programs to gain novel insights into local demographic and evolutionary processes relevant for fisheries management, habitat restoration, and conservation.
El Uso de la Reconstrucción de Relaciones Fraternales para Complementar el Monitoreo Tradicional en el Manejo de Pesquerías y en la Conservación de la Trucha Café Resumen Las tendencias de declinación en la abundancia de muchos peces son un llamado urgente para métodos de monitoreo más eficientes e informativos que proporcionarían los datos demográficos necesarios para la evaluación de la conservación actual, la restauración y las acciones de manejo. Investigamos cómo la reconstrucción genética del número de crías producidas por una pareja de padres de juveniles de ese mismo año de trucha café (Salmo trutta L.) proporciona información demográfica valiosa y complementaria, la cual nos permitió revelar los efectos de la calidad de hábitat y el número de reproductores sobre la densidad juvenil. Estudiamos hábitats de reproducción y crianza restaurados (n = 15) y controlados (n = 15) en 16 ríos y arroyos de trucha café a lo largo de dos años consecutivos para evaluar la efectividad de las actividades de restauración de hábitat. Se observaron densidades juveniles similares en ambos tipos de hábitat. De manera similar, no se detectaron diferencias entre los hábitats en el número efectivo de reproductores (Nb(SA) ), lo que indica que la trucha café usó de manera inmediata y reciente los hábitats de reproducción restaurados. Sólo se observó una relación débil entre el Nb(SA) y la densidad juvenil, lo que sugiere que múltiples factores afectan a la abundancia juvenil. En algunas áreas, se encontraron estimados muy bajos de Nb(SA) en sitios con una alta densidad juvenil, lo que indica que un pequeño número de reproductores puede producir un alto número de descendencia en condiciones favorables. En otros sitios, los estimados altos de Nb(SA) estuvieron asociados con una baja densidad juvenil, lo que sugiere que una baja calidad de hábitat o la falta de un sustrato adecuado para la reproducción en relación con los reproductores disponibles. Con base en estos resultados, recomendamos la incorporación de esta reconstrucción genética a la evaluación actual y futura de peces y a los programas de monitoreo para obtener percepciones novedosas de los procesos demográficos y evolutivos relevantes para el manejo de pesqueras, restauración de hábitat y conservación.
Asunto(s)
Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras/métodos , Reproducción , Trucha/fisiología , Animales , Ecosistema , Estonia , Femenino , Masculino , Densidad de Población , Ríos , Hermanos , Trucha/genéticaRESUMEN
BACKGROUND: Pedigree reconstruction using genetic analysis provides a useful means to estimate fundamental population biology parameters relating to population demography, trait heritability and individual fitness when combined with other sources of data. However, there remain limitations to pedigree reconstruction in wild populations, particularly in systems where parent-offspring relationships cannot be directly observed, there is incomplete sampling of individuals, or molecular parentage inference relies on low quality DNA from archived material. While much can still be inferred from incomplete or sparse pedigrees, it is crucial to evaluate the quality and power of available genetic information a priori to testing specific biological hypotheses. Here, we used microsatellite markers to reconstruct a multi-generation pedigree of wild Atlantic salmon (Salmo salar L.) using archived scale samples collected with a total trapping system within a river over a 10 year period. Using a simulation-based approach, we determined the optimal microsatellite marker number for accurate parentage assignment, and evaluated the power of the resulting partial pedigree to investigate important evolutionary and quantitative genetic characteristics of salmon in the system. RESULTS: We show that at least 20 microsatellites (ave. 12 alleles/locus) are required to maximise parentage assignment and to improve the power to estimate reproductive success and heritability in this study system. We also show that 1.5 fold differences can be detected between groups simulated to have differing reproductive success, and that it is possible to detect moderate heritability values for continuous traits (h2 ~ 0.40) with more than 80% power when using 28 moderately to highly polymorphic markers. CONCLUSION: The methodologies and work flow described provide a robust approach for evaluating archived samples for pedigree-based research, even where only a proportion of the total population is sampled. The results demonstrate the feasibility of pedigree-based studies to address challenging ecological and evolutionary questions in free-living populations, where genealogies can be traced only using molecular tools, and that significant increases in pedigree assignment power can be achieved by using higher numbers of markers.
Asunto(s)
Repeticiones de Microsatélite , Linaje , Salmo salar/genética , Alelos , Animales , Evolución Biológica , Simulación por Computador , Femenino , Masculino , RíosRESUMEN
Large effect loci often contain genes with critical developmental functions and potentially broad effects across life stages. However, their life stage-specific fitness consequences are rarely explored. In Atlantic salmon, variation in two large-effect loci, six6 and vgll3, is linked to age at maturity and several physiological and behavioral traits in early life. By genotyping the progeny of wild Atlantic salmon that were planted into natural streams with nutrient manipulations, we tested if genetic variation in these loci is associated with survival in early life. We found that higher early-life survival was linked to the genotype associated with late maturation in the vgll3, but with early maturation in the six6 locus. These effects were significant in high nutrients but not in low-nutrient streams. The differences in early survival were not explained by additive genetic effects in the offspring generation but by maternal genotypes in the six6 locus and by both parents' genotypes in the vgll3 locus. Our results suggest that indirect genetic effects of large-effect loci can be significant determinants of offspring fitness. This study demonstrates an intriguing case of how large-effect loci can exhibit complex fitness associations across life stages in the wild and indicates that predicting evolutionary dynamics is difficult.
Asunto(s)
Genotipo , Salmo salar , Animales , Salmo salar/genética , Femenino , Masculino , Maduración Sexual/genética , Variación Genética , Aptitud GenéticaRESUMEN
Studies linking genetics, behavior and life history in any species are rare. In Atlantic salmon (Salmo salar), age at maturity is a key life-history trait and associates strongly with the vgll3 locus, whereby the vgll3*E allele is linked with younger age at maturity, and higher body condition than the vgll3*L allele. However, the relationship between this genetic variation and behaviors like boldness and exploration which may impact growth and reproductive strategies is poorly understood. The pace-of-life syndrome (POLS) framework provides predictions, whereby heightened exploratory behavior and boldness are predicted in individuals with the early maturation-associated vgll3 genotype (EE). Here, we tested these predictions by investigating the relationship between vgll3 genotypes and exploration and boldness behaviors in 129 juveniles using the novel environment and novel object trials. Our results indicated that contrary to POLS predictions, vgll3*LL fish were bolder and more explorative, suggesting a genotype-level syndrome including several behaviors. Interestingly, clear sex differences were observed in the latency to move in a new environment, with vgll3*EE males, but not females, taking longer to move than their vgll3*LL counterparts. Our results provide further empirical support for recent calls to consider more nuanced explanations than the pace of life theory for integrating behavior into life-history theory.
RESUMEN
Metabolic rates, including standard (SMR) and maximum (MMR) metabolic rate have often been linked with life-history strategies. Variation in context- and tissue-level metabolism underlying SMR and MMR may thus provide a physiological basis for life-history variation. This raises a hypothesis that tissue-specific metabolism covaries with whole-animal metabolic rates and is genetically linked to life history. In Atlantic salmon (Salmo salar), variation in two loci, vgll3 and six6, affects life history via age-at-maturity as well as MMR. Here, using individuals with known SMR and MMR with different vgll3 and six6 genotype combinations, we measured proxies of mitochondrial density and anaerobic metabolism, i.e. maximal activities of the mitochondrial citrate synthase (CS) and lactate dehydrogenase (LDH) enzymes, in four tissues (heart, intestine, liver, white muscle) across low- and high-food regimes. We found enzymatic activities were related to metabolic rates, mainly SMR, in the intestine and heart. Individual loci were not associated with the enzymatic activities, but we found epistatic effects and genotype-by-environment interactions in CS activity in the heart and epistasis in LDH activity in the intestine. These effects suggest that mitochondrial density and anaerobic capacity in the heart and intestine may partly mediate variation in metabolic rates and life history via age-at-maturity. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Asunto(s)
Músculos , Salmo salar , Animales , Humanos , Anaerobiosis , Evolución Biológica , Genotipo , Corazón , Factores de Transcripción , Metabolismo Energético/fisiologíaRESUMEN
Estimation of quantitative genetic parameters is important for improving salmonid broodstock management in commercial and government hatcheries. Using a replicated 2 × 2 factorial breeding design (48 families and 192 individuals), we partitioned early immune response transcription variation into additive genetic, non-additive genetic, and maternal components in juvenile Chinook salmon (Oncorhynchus tshawytscha). Transcription of four cytokine genes (IL1, TNF-α, IL-8, IL8-R) and two control genes (IgM and RPS-11) was measured relative to an endogenous control (EF1a) before and 24 h after immune stimulation with Vibrio vaccine. Additive genetic variation was not significant for cytokine transcription and heritability ranged from 0.44 (in pre-challenge IL1) to 0.04 (in post-challenge TNF-α). Non-additive genetic variance was significant in post-challenge IL1 (18 %) and TNF-α (12 %) while maternal effects contributed to pre-challenge cytokine transcription. Cytokine transcription co-expressed within but not between pre- and post-challenge states. The lack of additive genetic effects indicates that cytokine transcription is not a likely candidate for selection programs to improve immune function in Chinook salmon. Our results add to the growing evidence that non-additivity in salmon is common and contributes to our understanding of the genetic architecture of transcription. This indicates that transcription variation may act to maintain genetic variation and facilitate rapid adaptive response in salmonids.
Asunto(s)
Vacunas Bacterianas/inmunología , Citocinas/genética , Salmón/genética , Salmón/inmunología , Transcripción Genética , Vibrio/inmunología , Animales , Femenino , Proteínas de Peces/genética , Inmunización , Inmunoglobulina M/genética , Interleucina-1/genética , Interleucina-8/genética , Masculino , Receptores de Interleucina-8/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Ribosómicas/genética , Factores de Tiempo , Factor de Necrosis Tumoral alfa/genéticaRESUMEN
Atlantic salmon (Salmo salar) is a species with diverse life-history strategies, to which the timing of maturation contributes considerably. Recently, the genome region including the gene vgll3 has gained attention as a locus with a large effect on Atlantic salmon maturation timing, and recent studies on the vgll3 locus in salmon have indicated that its effect might be mediated through body condition and accumulation of adipose tissue. However, the cellular and physiological pathways leading from vgll3 genotype to phenotype are still unknown. Standard metabolic rate is a potentially important trait for resource acquisition and assimilation and we hypothesized that this trait, being a proxy for the maintenance energy expenditure of an individual, could be an important link in the pathway from vgll3 genotype to maturation timing phenotype. As a first step to studying links between vgll3 and the metabolic phenotype of Atlantic salmon, we measured the standard metabolic rate of 150 first-year Atlantic salmon juveniles of both sexes, originating from 14 different families with either late-maturing or early-maturing vgll3 genotypes. No significant difference in mass-adjusted standard metabolic rate was detected between individuals with different vgll3 genotypes, indicating that juvenile salmon of different vgll3 genotypes have similar maintenance energy requirements in the experimental conditions used and that the effects of vgll3 on body condition and maturation are not strongly related to maintenance energy expenditure in either sex at this life stage.
RESUMEN
Populations experiencing sudden environmental change must be capable of rapidly evolving to survive. Here we explore changes in gene transcription as a mechanism for rapid adaptation at four osmoregulatory genes (CFTR I, NaK ATPase1αa, NaK ATPase1αb and GHRII) in anadromous steelhead trout versus a derived land-locked population after 14 generations. Transcription was measured before and after a 24-h saltwater challenge in pure and reciprocal hybrid offspring of fish from both populations reared in a common environment for two generations. Significant differences between the landlocked and migratory populations were observed, particularly in fresh water at the NaK ATPase1αa and GHRII genes, indicating rapid evolutionary change, possibly associated with reduced energy expenditure in the landlocked lake system. Phenotypic divergence analysis (Q (ST)) shows that the observed transcriptional differences deviate from neutral expectations. Some reciprocal crosses exhibited anomalous transcription consistent with sex-linked epistatic or genetic imprinting effects. Our results highlight unpredictable phenotypic outcomes of hybridization among locally adapted populations and the need to exercise caution when interbreeding populations for conservation purposes.
Asunto(s)
Adaptación Fisiológica/genética , Evolución Molecular , Oncorhynchus mykiss/genética , Equilibrio Hidroelectrolítico/genética , Alaska , Animales , Cruzamientos Genéticos , Epistasis Genética , Femenino , Ligamiento Genético , Genética de Población , Impresión Genómica , Hibridación Genética , Masculino , Oncorhynchus mykiss/clasificación , Receptores de Somatotropina/clasificación , Receptores de Somatotropina/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Transcripción GenéticaRESUMEN
Purple sulfur bacteria, which are known to be the most ancient among anoxygenic phototrophs, play an important role in the global sulfur cycle. Allochromatium vinosum oxidizes reduced sulfur compounds such as hydrogen sulfide, elemental sulfur and thiosulfide. At low oxygen concentrations, A. vinosum can grow chemotrophically using oxygen as the terminal electron acceptor. Being also a nitrogen fixer, A. vinosum is faced with the paradox of co-existence of aerobic metabolism and nitrogen fixation. Due to growth difficulties, only a few studies have dealt with the aerobic metabolism of the organism and, until now, there has been no information about the genes involved in the respiratory metabolism of purple sulfur bacteria. In this article we show the first terminal oxidase gene for A. vinosum. The presence of a Bd type of quinol oxidase is necessary to protect nitrogenases against the inhibitory effects of oxygen. In this case, a nitrogen fixation related gene is part of the cyd operon and this gene is co-transcribed with cydAB genes. Bd oxidase of A. vinosum may be the earliest form of oxidase where the function of the enzyme is to scavenge the contaminant oxygen during nitrogen fixation. This may be an important clue about the early evolution of oxygenic photosynthesis, perhaps as a protective mechanism for nitrogen fixation.