Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nutr Rev ; 80(5): 1001-1012, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-34406390

RESUMEN

Apolipoprotein E plays a crucial role in cholesterol metabolism. The immunomodulatory functions of the human polymorphic APOE gene have gained particular interest because APOE4, a well-recognized risk factor for late-onset Alzheimer's disease, has also been recently linked to increased risk of COVID-19 infection severity in a large UK biobank study. Although much is known about apoE functions in the nervous system, much less is known about APOE polymorphism effects on malnutrition and enteric infections and the consequences for later development in underprivileged environments. In this review, recent findings are summarized of apoE's effects on intestinal function in health and disease and the role of APOE4 in protecting against infection and malnutrition in children living in unfavorable settings, where poor sanitation and hygiene prevail, is highlighted. The potential impact of APOE4 on later development also is discussed and gaps in knowledge are identified that need to be addressed to protect children's development under adverse environments.


Asunto(s)
Apolipoproteína E4 , Enfermedad Crónica , Desnutrición , Enfermedad de Alzheimer , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Niño , Humanos , Desnutrición/complicaciones
2.
PLoS One ; 9(2): e89562, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586873

RESUMEN

Apolipoliprotein E (apoE), a critical targeting protein in lipid homeostasis, has been found to have immunoinflammatory effects on murine models of infection and malnutrition. The effects of apoE in undernourished and Cryptosporidium parvum-infected mice have not been investigated. In order to study the role of apoE in a model of C. parvum infection, we used the following C57BL6J mouse genetic strains: APOE-deficient, wild-type controls, and APOE targeted replacement (TR) mice expressing human APOE genes (E3/3; E4/4). Experimental mice were orally infected with 10(7)-unexcysted-C. parvum oocysts between post-natal days 34-35 followed by malnutrition induced with a low-protein diet. Mice were euthanized seven days after C. parvum-challenge to investigate ileal morphology, cytokines, and cationic arginine transporter (CAT-1), arginase 1, Toll-like receptor 9 (TLR9), and inducible nitric oxide synthase (iNOS) expression. In addition, we analyzed stool oocyst shedding by qRT-PCR and serum lipids. APOE4/4-TR mice had better weight gains after infection plus malnutrition compared with APOE3/3-TR and wild-type mice. APOE4/4-TR and APOE knockout mice had lower oocyst shedding, however the latter exhibited with villus blunting and higher ileal pro-inflammatory cytokines and iNOS transcripts. APOE4/4-TR mice had increased ileal CAT-1, arginase-1, and TLR9 transcripts relative to APOE knockout. Although with anti-parasitic effects, APOE deficiency exacerbates intestinal inflammatory responses and mucosal damage in undernourished and C. parvum-infected mice. In addition, the human APOE4 gene was found to be protective against the compounded insult of Cryptosporidium infection plus malnutrition, thus extending our previous findings of the protection against diarrhea in APOE4 children. Altogether our findings suggest that apoE plays a key role in the intestinal restitution and immunoinflammatory responses with Cryptosporidium infection and malnutrition.


Asunto(s)
Apolipoproteínas E/metabolismo , Criptosporidiosis/metabolismo , Animales , Apolipoproteínas E/genética , Criptosporidiosis/genética , Dieta con Restricción de Proteínas , Inflamación/genética , Inflamación/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA