Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Pathog ; 9(9): e1003599, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086130

RESUMEN

The interplay between autophagy and intracellular pathogens is intricate as autophagy is an essential cellular response to fight against infections, whereas numerous microbes have developed strategies to escape this process or even exploit it to their own benefit. The fine tuned timing and/or selective molecular pathways involved in the induction of autophagy upon infections could be the cornerstone allowing cells to either control intracellular pathogens, or be invaded by them. We report here that measles virus infection induces successive autophagy signallings in permissive cells, via distinct and uncoupled molecular pathways. Immediately upon infection, attenuated measles virus induces a first transient wave of autophagy, via a pathway involving its cellular receptor CD46 and the scaffold protein GOPC. Soon after infection, a new autophagy signalling is initiated which requires viral replication and the expression of the non-structural measles virus protein C. Strikingly, this second autophagy signalling can be sustained overtime within infected cells, independently of the expression of C, but via a third autophagy input resulting from cell-cell fusion and the formation of syncytia. Whereas this sustained autophagy signalling leads to the autophagy degradation of cellular contents, viral proteins escape from degradation. Furthermore, this autophagy flux is ultimately exploited by measles virus to limit the death of infected cells and to improve viral particle formation. Whereas CD150 dependent virulent strains of measles virus are unable to induce the early CD46/GOPC dependent autophagy wave, they induce and exploit the late and sustained autophagy. Overall, our work describes distinct molecular pathways for an induction of self-beneficial sustained autophagy by measles virus.


Asunto(s)
Virus del Sarampión/metabolismo , Virus del Sarampión/patogenicidad , Sarampión/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Antígenos CD/genética , Antígenos CD/metabolismo , Autofagia , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Gigantes/metabolismo , Células Gigantes/patología , Células Gigantes/virología , Proteínas de la Matriz de Golgi , Células HeLa , Humanos , Sarampión/genética , Sarampión/patología , Virus del Sarampión/genética , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria
2.
PLoS Pathog ; 7(12): e1002422, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22174682

RESUMEN

Autophagy is a conserved degradative pathway used as a host defense mechanism against intracellular pathogens. However, several viruses can evade or subvert autophagy to insure their own replication. Nevertheless, the molecular details of viral interaction with autophagy remain largely unknown. We have determined the ability of 83 proteins of several families of RNA viruses (Paramyxoviridae, Flaviviridae, Orthomyxoviridae, Retroviridae and Togaviridae), to interact with 44 human autophagy-associated proteins using yeast two-hybrid and bioinformatic analysis. We found that the autophagy network is highly targeted by RNA viruses. Although central to autophagy, targeted proteins have also a high number of connections with proteins of other cellular functions. Interestingly, immunity-associated GTPase family M (IRGM), the most targeted protein, was found to interact with the autophagy-associated proteins ATG5, ATG10, MAP1CL3C and SH3GLB1. Strikingly, reduction of IRGM expression using small interfering RNA impairs both Measles virus (MeV), Hepatitis C virus (HCV) and human immunodeficiency virus-1 (HIV-1)-induced autophagy and viral particle production. Moreover we found that the expression of IRGM-interacting MeV-C, HCV-NS3 or HIV-NEF proteins per se is sufficient to induce autophagy, through an IRGM dependent pathway. Our work reveals an unexpected role of IRGM in virus-induced autophagy and suggests that several different families of RNA viruses may use common strategies to manipulate autophagy to improve viral infectivity.


Asunto(s)
Autofagia/fisiología , Proteínas de Unión al GTP/metabolismo , Infecciones por Virus ARN/metabolismo , Infecciones por Virus ARN/transmisión , Virus ARN/metabolismo , Secuencia de Bases , Western Blotting , Biología Computacional , Proteínas de Unión al GTP/genética , Células HeLa , Humanos , Microscopía Confocal , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Infecciones por Virus ARN/genética , Virus ARN/genética , ARN Interferente Pequeño , Transfección , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/metabolismo
3.
Cell Host Microbe ; 17(4): 515-25, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25771791

RESUMEN

Xenophagy, an essential anti-microbial cell-autonomous mechanism, relies on the ability of the autophagic process to selectively entrap intracellular pathogens within autophagosomes to degrade them in autolysosomes. This selective targeting is carried out by specialized autophagy receptors, such as NDP52, but it is unknown whether the fusion of pathogen-containing autophagosomes with lysosomes is also regulated by pathogen-specific cellular factors. Here, we show that NDP52 also promotes the maturation of autophagosomes via its interaction with LC3A, LC3B, and/or GABARAPL2 through a distinct LC3-interacting region, and with MYOSIN VI. During Salmonella Typhimurium infection, the regulatory function of NDP52 in autophagosome maturation is complementary but independent of its function in pathogen targeting to autophagosomes, which relies on the interaction with LC3C. Thus, complete xenophagy is selectively regulated by a single autophagy receptor, which initially orchestrates bacteria targeting to autophagosomes and subsequently ensures pathogen degradation by regulating pathogen-containing autophagosome maturation.


Asunto(s)
Autofagia , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Proteínas Nucleares/metabolismo , Fagosomas/metabolismo , Salmonella typhimurium/inmunología , Células HeLa , Humanos , Lisosomas/metabolismo
4.
AIDS Res Hum Retroviruses ; 20(2): 175-82, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15018705

RESUMEN

In addition to their essential role in adaptive immunity, dendritic cells (DCs) participate in innate immunity. In the context of measles virus (MV) or cytomegalovirus infections, they develop cytotoxic functions that may contribute in vivo to the elimination of virus-infected cells, but that also kill infected and noninfected T lymphocytes. Because the human immunodeficiency virus (HIV) induces T cell depletion through mechanisms that are still obscure, we investigated its ability to trigger DC cytotoxicity. When incubated with HIV, monocyte-derived DCs induced apoptosis in MDA-231 cells, which are sensitive to MV-induced DC cytotoxicity, and in uninfected as well as HIV-infected H9 CD4+ T cell lines. This apoptosis was inhibited by a mixture of FasL, TRAIL, TNF-alpha, and TWEAK inhibitors. Indeed, HIV infection induced or enhanced sensitivity to TRAIL, TNF-alpha, and TWEAK in H9 cells. Moreover, dendritic cells incubated with HIV-1 BAL or a wildtype HIV-1 isolate induced apoptosis in autologous primary CD4+ T lymphocytes, infected or not with a wild-type HIV-1 isolate. Therefore, induction of DC cytotoxicity by HIV may be relevant to in vivo HIV infection. Induction of cytotoxicity in DCs by HIV might contribute to HIV-associated T cell depletion through induction of apoptosis, especially in the early stages of infection. It may also contribute to elimination of infected cells in vivo, thereby enhancing cross-presentation of HIV by DCs. Therefore this new cytotoxic function of DCs may play an important role in innate and adaptive immunity during HIV infection.


Asunto(s)
Apoptosis/inmunología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD4-Positivos/virología , Células Dendríticas/inmunología , Células Dendríticas/virología , VIH-1/patogenicidad , Proteínas Reguladoras de la Apoptosis , Linfocitos T CD4-Positivos/inmunología , Línea Celular , Células Cultivadas , Citotoxicidad Inmunológica , Infecciones por VIH/inmunología , Infecciones por VIH/patología , Infecciones por VIH/virología , Humanos , Inmunidad Innata , Glicoproteínas de Membrana/inmunología , Ligando Inductor de Apoptosis Relacionado con TNF , Factor de Necrosis Tumoral alfa/inmunología
5.
Virus Res ; 152(1-2): 115-25, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20600391

RESUMEN

While the antiviral response during measles virus (MeV) infection is documented, the contribution of the hosting cell type to the type I interferon (IFN-alpha/beta) response is still not clearly established. Here, we report that a signature heterogeneity of the IFN-alpha/beta response according to the cell type. The MeV tropism dictated by the expression of appropriate cellular receptor appeared to be crucial for epithelial cells. For conventional DCs (cDCs), the maturation state played a prominent role. In response to both wild type MeV isolates and laboratory/vaccine strains, immature cDCs produced higher levels of IFN-alpha than mature cDCs, despite the reduced expression levels of both CD46 and CD150 receptors by the former ones. While in epithelial cells and cDCs the MeV transcription was required to activate the IFN-alpha/beta response, plasmacytoid DCs (pDCs) rapidly produced large amounts of IFN-alpha mostly independently of the viral infection cycle. This argues for a significant contribution of pDCs in response to MeV infection and/or vaccination.


Asunto(s)
Diferenciación Celular , Células Dendríticas/inmunología , Endocitosis , Células Epiteliales/inmunología , Interferón Tipo I/inmunología , Virus del Sarampión/fisiología , Sarampión/inmunología , Receptores Virales/inmunología , Antígenos CD/inmunología , Células Cultivadas , Células Dendríticas/citología , Células Dendríticas/virología , Células Epiteliales/citología , Células Epiteliales/virología , Humanos , Sarampión/fisiopatología , Sarampión/virología , Virus del Sarampión/genética , Virus del Sarampión/inmunología , Proteína Cofactora de Membrana/inmunología , Receptores de Superficie Celular/inmunología , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Tropismo Viral
6.
Cell Host Microbe ; 6(4): 354-66, 2009 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-19837375

RESUMEN

Autophagy is a highly regulated self-degradative mechanism required at a basal level for intracellular clearance and recycling of cytoplasmic contents. Upon intracellular pathogen invasion, autophagy can be induced as an innate immune mechanism to control infection. Nevertheless, pathogens have developed strategies to avoid or hijack autophagy for their own benefit. The molecular pathways inducing autophagy in response to infection remain poorly documented. We report here that the engagement of CD46, a ubiquitous human surface receptor able to bind several different pathogens, is sufficient to induce autophagy. CD46-Cyt-1, one of the two C-terminal splice variants of CD46, is linked to the autophagosome formation complex VPS34/Beclin1 via its interaction with the scaffold protein GOPC. Measles virus and group A Streptococcus, two CD46-binding pathogens, induce autophagy through a CD46-Cyt-1/GOPC pathway. Thus, upon microorganism recognition, a cell surface pathogen receptor can directly trigger autophagy, a critical step to control infection.


Asunto(s)
Autofagia , Virus del Sarampión/inmunología , Proteína Cofactora de Membrana/inmunología , Streptococcus pyogenes/inmunología , Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Proteínas Portadoras/metabolismo , Proteínas de la Matriz de Golgi , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas
7.
Nat Med ; 14(1): 81-7, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18157139

RESUMEN

IL-17A is a T cell-specific cytokine that is involved in chronic inflammations, such as Mycobacterium infection, Crohn's disease, rheumatoid arthritis and multiple sclerosis. Mouse models have explained the molecular basis of IL-17A production and have shown that IL-17A has a positive effect not only on granuloma formation and neurodegeneration through unknown mechanisms, but also on bone resorption through Receptor activator of NF-kappaB ligand (RANKL) induction in osteoblasts. Langerhans cell histiocytosis (LCH) is a rare disease of unknown etiology, lacking an animal model, that cumulates symptoms that are found separately in various IL-17A-related diseases, such as aggressive chronic granuloma formation, bone resorption and soft tissue lesions with occasional neurodegeneration. We examined IL-17A in the context of LCH and found that there were high serum levels of IL-17A during active LCH and unexpected IL-17A synthesis by dendritic cells (DCs), the major cell type in LCH lesions. We also found an IL-17A-dependent pathway for DC fusion, which was highly potentiated by IFN-gamma and led to giant cells expressing three major tissue-destructive enzymes: tartrate resistant acidic phosphatase and matrix metalloproteinases 9 and 12. IFN-gamma expression has been previously documented in LCH and observed in IL-17A-related diseases. Notably, serum IL-17A-dependent fusion activity correlates with LCH activity. Thus, IL-17A and IL-17A-stimulated DCs represent targets that may have clinical value in the treatment of LCH and other IL-17A-related inflammatory disorders.


Asunto(s)
Células Dendríticas/metabolismo , Histiocitosis de Células de Langerhans/patología , Interleucina-17/metabolismo , Animales , Artritis Reumatoide/metabolismo , Fusión Celular , Humanos , Inflamación , Interferón gamma/metabolismo , Activación de Linfocitos , Linfocitos/metabolismo , Ratones , Monocitos/metabolismo , Mycobacterium/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos
8.
Eur J Immunol ; 37(3): 747-57, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17304626

RESUMEN

Dendritic cells (DC) are the mononuclear cells that initiate adaptive immune responses. Osteoclasts (OC) are the multinucleated giant cells that resorb bone. As previously described for human conventional DC (cDC), we demonstrate that murine cDC, either in vitro generated from Fms-like tyrosine kinase 3 (Flt3)+ bone marrow progenitors or ex vivo purified from spleen, are able to develop into OC in response to M-CSF and receptor activator of NF-kappaB ligand (RANKL) in vitro. This transdifferentiation is driven by the immune environment that controls cDC maturation, cell fusion, tartrate-resistant acid phosphatase (TRAP) and bone resorption activities. Only immature cDC have the capacity to become OC since mature cDC or plasmacytoid DC do not. Additions of the pro-inflammatory cytokines, such as IL-1beta and TNF-alpha, or human rheumatoid synovial fluid, increase murine cDC transdifferentiation into OC, whereas IFN-alpha inhibits it. The adaptive cytokine, IFN-gamma, inhibits cDC fusion while IL-4 increases it. IL-2, IFN-gamma and IL-4 inhibit TRAP and bone resorption activities contrary to IL-10, which enhances both activities. A putative new "immune multinucleated giant cell" unable to resorb bone, which is formed owing to IL-4, is underlined. The future analysis of cDC transdifferentiation into OC in murine models of inflammatory arthritis will give us the quantitative importance of this phenomenon in vivo.


Asunto(s)
Diferenciación Celular/inmunología , Citocinas/fisiología , Células Dendríticas/citología , Inhibidores de Crecimiento/fisiología , Osteoclastos/citología , Animales , Células Cultivadas , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Inmunidad Activa , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Osteoclastos/inmunología , Osteoclastos/metabolismo
9.
J Immunol ; 177(8): 4957-61, 2006 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17015676

RESUMEN

T regulatory cell 1 (Tr1) are low proliferating peripherally induced suppressive T cells. Engaging CD3 and CD46 on human CD4+ T cells induces a Tr1-like phenotype. In this study, we report that human Tr1-like cells do not sustain proliferation over time. The weak proliferation of these cells results first from their inability to sustain expression of various cell cycle-associated proteins, to efficiently degrade the inhibitor of cell cycle progression p27/Kip1 and, as a consequence, in their accumulation in the G0-G1 phase. Also, the reduced proliferation of Tr1-like cells results from their increased sensitivity to death as they divide, through a mechanism that is neither Fas-mediated nor Bcl2/Bcl-xL related. Both properties, impaired cell cycle and death sensitivity, are explained by a specific defective activation of Akt that impairs the expression of Survivin. Thus, our results show that CD3/CD46-induced Tr1-like cells die through a process of abortive proliferation.


Asunto(s)
Proliferación Celular , Proteína Cofactora de Membrana/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas de Neoplasias/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Transducción de Señal , Linfocitos T Reguladores/citología , Complejo CD3/fisiología , Ciclo Celular , Muerte Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Humanos , Proteínas Inhibidoras de la Apoptosis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Survivin
10.
J Gen Virol ; 82(Pt 9): 2125-2129, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11514721

RESUMEN

Analysis of measles virus (MV) pathogenesis requires the development of an adequate small animal model of MV infection. In this study, permissivity to MV infection was compared in human and transgenic murine T lymphocytes, expressing different levels of the human MV receptor, CD46. Whereas MV binding and entry correlated with CD46 expression, higher levels of MV replication were always observed in human T lymphocytes. This suggests the existence of intracellular factors, acting posterior to virus entry, that could limit MV replication in murine lymphocytes and should be considered when creating new animal models of MV infection.


Asunto(s)
Antígenos CD/fisiología , Virus del Sarampión/fisiología , Glicoproteínas de Membrana/fisiología , Linfocitos T/virología , Animales , Proteína Cofactora de Membrana , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , ARN Mensajero/análisis
11.
J Virol ; 76(13): 6415-24, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12050353

RESUMEN

In the thymus, epithelial cells comprise a heterogeneous population required for the generation of functional T lymphocytes, suggesting that thymic epithelium disruption by viruses may compromise T-cell lymphopoiesis in this organ. In a previous report, we demonstrated that in vitro, measles virus induced differentiation of cortical thymic epithelial cells as characterized by (i) cell growth arrest, (ii) morphological and phenotypic changes, and (iii) apoptotis as a final step of this process. In the present report, we have analyzed the mechanisms involved. First, measles virus-induced differentiation of thymic epithelial cells is shown to be strictly dependent on beta interferon (IFN-beta) secretion. In addition, transfection with double-stranded RNA, a common intermediate of replication for a broad spectrum of viruses, is reported to similarly mediate thymic epithelial cell differentiation through IFN-beta induction. Finally, we demonstrated that recombinant IFN-alpha, IFN-beta, or IFN-gamma was sufficient to induce differentiation and apoptosis of uninfected thymic epithelial cells. These observations suggested that interferon secretion by either infected cells or activated leukocytes, such as plasmacytoid dendritic cells or lymphocytes, may induce thymic epithelium disruption in a pathological context. Thus, we have identified a new mechanism that may contribute to thymic atrophy and altered T-cell lymphopoiesis associated with many infections.


Asunto(s)
Células Epiteliales/citología , Interferón beta/fisiología , Virus del Sarampión/fisiología , Timo/citología , Apoptosis , Diferenciación Celular , Línea Celular , Células Cultivadas , Células Epiteliales/virología , Humanos , Interferón Tipo I/farmacología , Interferón beta/genética , Interferón beta/metabolismo , Interferón gamma/farmacología , ARN Bicatenario/metabolismo , Proteínas Recombinantes , Timo/virología , Transfección
12.
J Virol ; 77(21): 11332-46, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14557619

RESUMEN

During acute measles virus (MV) infection, an efficient immune response occurs, followed by a transient but profound immunosuppression. MV nucleoprotein (MV-N) has been reported to induce both cellular and humoral immune responses and paradoxically to account for immunosuppression. Thus far, this latter activity has been attributed to MV-N binding to human and murine FcgammaRII. Here, we show that apoptosis of MV-infected human thymic epithelial cells (TEC) allows the release of MV-N in the extracellular compartment. This extracellular N is then able to bind either to MV-infected or uninfected TEC. We show that recombinant MV-N specifically binds to a membrane protein receptor, different from FcgammaRII, highly expressed on the cell surface of TEC. This new receptor is referred to as nucleoprotein receptor (NR). In addition, different Ns from other MV-related morbilliviruses can also bind to FcgammaRII and/or NR. We show that the region of MV-N responsible for binding to NR maps to the C-terminal fragment (N(TAIL)). Binding of MV-N to NR on TEC triggers sustained calcium influx and inhibits spontaneous cell proliferation by arresting cells in the G(0) and G(1) phases of the cell cycle. Finally, MV-N binds to both constitutively expressed NR on a large spectrum of cells from different species and to human activated T cells, leading to suppression of their proliferation. These results provide evidence that MV-N, after release in the extracellular compartment, binds to NR and thereby plays a role in MV-induced immunosuppression.


Asunto(s)
Células Epiteliales/metabolismo , Tolerancia Inmunológica , Virus del Sarampión/patogenicidad , Nucleoproteínas/metabolismo , Receptores de Superficie Celular/metabolismo , Timo/citología , Proteínas Virales/metabolismo , Animales , Apoptosis , Línea Celular , Células Epiteliales/virología , Humanos , Activación de Linfocitos , Virus del Sarampión/metabolismo , Ratones , Proteínas de la Nucleocápside , Nucleoproteínas/genética , Receptores de IgG/metabolismo , Proteínas Recombinantes/metabolismo , Linfocitos T/inmunología , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA