Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 90(1): 133-149, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36883748

RESUMEN

PURPOSE: To compare the performances of uniform-density spiral (UDS), variable-density spiral (VDS), and dual-density spiral (DDS) samplings in multi-shot diffusion imaging, and determine a sampling strategy that balances reliability of shot navigator and overall DWI image quality. THEORY AND METHODS: UDS, VDS, and DDS trajectories were implemented to achieve four-shot diffusion-weighted spiral imaging. First, the static B0 off-resonance effects in UDS, VDS, and DDS acquisitions were analyzed based on a signal model. Then, in vivo experiments were performed to verify the theoretical analyses, and fractional anisotropy (FA) fitting residuals were used to quantitatively assess the quality of spiral diffusion data for tensor estimation. Finally, the SNR performances and g-factor behavior of the three spiral samplings were evaluated using a Monte Carlo-based pseudo multiple replica method. RESULTS: Among the three spiral trajectories with the same readout duration, UDS sampling exhibited the least off-resonance artifacts. This was most evident when the static B0 off-resonance effect was severe. The UDS diffusion images had higher anatomical fidelity and lower FA fitting residuals than the other two counterparts. Furthermore, the four-shot UDS acquisition achieved the best SNR performance in diffusion imaging with 12.11% and 40.85% improvements over the VDS and DDS acquisitions with the same readout duration, respectively. CONCLUSION: UDS sampling is an efficient spiral acquisition scheme for high-resolution diffusion imaging with reliable navigator information. It provides superior off-resonance performance and SNR efficiency over the VDS and DDS samplings for the tested scenarios.


Asunto(s)
Algoritmos , Imagen de Difusión por Resonancia Magnética , Reproducibilidad de los Resultados , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Interpretación de Imagen Asistida por Computador/métodos , Artefactos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Eco-Planar
2.
NMR Biomed ; 36(1): e4822, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36031585

RESUMEN

The purpose of this study was to develop a self-navigation strategy to improve scan efficiency and image quality of water/fat-separated, diffusion-weighted multishot echo-planar imaging (ms-EPI). This is accomplished by acquiring chemical shift-encoded diffusion-weighted data and using an appropriate water-fat and diffusion-encoded signal model to enable reconstruction directly from k-space data. Multishot EPI provides reduced geometric distortion and improved signal-to-noise ratio in diffusion-weighted imaging compared with single-shot approaches. Multishot acquisitions require corrections for physiological motion-induced shot-to-shot phase errors using either extra navigators or self-navigation principles. In addition, proper fat suppression is important, especially in regions with large B0 inhomogeneity. This makes the use of chemical shift encoding attractive. However, when combined with ms-EPI, shot-to-shot phase navigation can be challenging because of the spatial displacement of fat signals along the phase-encoding direction. In this work, a new model-based, self-navigated water/fat separation reconstruction algorithm is proposed. Experiments in legs and in the head-neck region of 10 subjects were performed to validate the algorithm. The results are compared with an image-based, two-dimensional (2D) navigated water/fat separation approach for ms-EPI and with a conventional fat saturation approach. Compared with the 2D navigated method, the use of self-navigation reduced the shot duration time by 30%-35%. The proposed algorithm provided improved diffusion-weighted water images in both leg and head-neck regions compared with the 2D navigator-based approach. The proposed algorithm also produced better fat suppression compared with the conventional fat saturation technique in the B0 inhomogeneous regions. In conclusion, the proposed self-navigated reconstruction algorithm can produce superior water-only diffusion-weighted EPI images with less artefacts compared with the existing methods.


Asunto(s)
Imagen Eco-Planar , Agua , Humanos
3.
MAGMA ; 36(3): 499-512, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37202655

RESUMEN

OBJECTIVE: To implement magnetic resonance fingerprinting (MRF) on a permanent magnet 50 mT low-field system deployable as a future point-of-care (POC) unit and explore the quality of the parameter maps. MATERIALS AND METHODS: 3D MRF was implemented on a custom-built Halbach array using a slab-selective spoiled steady-state free precession sequence with 3D Cartesian readout. Undersampled scans were acquired with different MRF flip angle patterns and reconstructed using matrix completion and matched to the simulated dictionary, taking excitation profile and coil ringing into account. MRF relaxation times were compared to that of inversion recovery (IR) and multi-echo spin echo (MESE) experiments in phantom and in vivo. Furthermore, B0 inhomogeneities were encoded in the MRF sequence using an alternating TE pattern, and the estimated map was used to correct for image distortions in the MRF images using a model-based reconstruction. RESULTS: Phantom relaxation times measured with an optimized MRF sequence for low field were in better agreement with reference techniques than for a standard MRF sequence. In vivo muscle relaxation times measured with MRF were longer than those obtained with an IR sequence (T1: 182 ± 21.5 vs 168 ± 9.89 ms) and with an MESE sequence (T2: 69.8 ± 19.7 vs 46.1 ± 9.65 ms). In vivo lipid MRF relaxation times were also longer compared with IR (T1: 165 ± 15.1 ms vs 127 ± 8.28 ms) and with MESE (T2: 160 ± 15.0 ms vs 124 ± 4.27 ms). Integrated ΔB0 estimation and correction resulted in parameter maps with reduced distortions. DISCUSSION: It is possible to measure volumetric relaxation times with MRF at 2.5 × 2.5 × 3.0 mm3 resolution in a 13 min scan time on a 50 mT permanent magnet system. The measured MRF relaxation times are longer compared to those measured with reference techniques, especially for T2. This discrepancy can potentially be addressed by hardware, reconstruction and sequence design, but long-term reproducibility needs to be further improved.


Asunto(s)
Imagen por Resonancia Magnética , Sistemas de Atención de Punto , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Músculos , Fantasmas de Imagen , Lípidos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo
4.
MAGMA ; 36(3): 355-373, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37171689

RESUMEN

OBJECT: Lower-field MR is reemerging as a viable, potentially cost-effective alternative to high-field MR, thanks to advances in hardware, sequence design, and reconstruction over the past decades. Evaluation of lower field strengths, however, is limited by the availability of lower-field systems on the market and their considerable procurement costs. In this work, we demonstrate a low-cost, temporary alternative to purchasing a dedicated lower-field MR system. MATERIALS AND METHODS: By ramping down an existing clinical 3 T MRI system to 0.75 T, proton signals can be acquired using repurposed 13C transmit/receive hardware and the multi-nuclei spectrometer interface. We describe the ramp-down procedure and necessary software and hardware changes to the system. RESULTS: Apart from presenting system characterization results, we show in vivo examples of cardiac cine imaging, abdominal two- and three-point Dixon-type water/fat separation, water/fat-separated MR Fingerprinting, and point-resolved spectroscopy. In addition, the ramp-down approach allows unique comparisons of, e.g., gradient fidelity of the same MR system operated at different field strengths using the same receive chain, gradient coils, and amplifiers. DISCUSSION: Ramping down an existing MR system may be seen as a viable alternative for lower-field MR research in groups that already own multi-nuclei hardware and can also serve as a testing platform for custom-made multi-nuclei transmit/receive coils.


Asunto(s)
Imagen por Resonancia Magnética , Programas Informáticos , Imagen por Resonancia Magnética/métodos , Protones
5.
Magn Reson Med ; 87(4): 1771-1783, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34752650

RESUMEN

PURPOSE: To develop a methodology to simultaneously perform single echo Dixon water-fat imaging and susceptibility-weighted imaging (SWI) based on a single echo time (TE) ultra-short echo time (UTE) (sUTE) scan to assess vertebral fractures and degenerative bone changes in the thoracolumbar spine. METHODS: A methodology was developed to solve the smoothness-constrained inverse water-fat problem to separate water and fat while removing unwanted low-frequency phase terms. Additionally, the corrected UTE phase was used for SWI. UTE imaging (TE: 0.14 ms, 3T MRI) was performed in the lumbar spine of nine patients with vertebral fractures and bone marrow edema (BME). All images were reviewed by two radiologists. Water- and fat-separated images were analyzed in comparison with short-tau inversion recovery (STIR) and with respect to BME visibility. The visibility of fracture lines and cortical outlining of the UTE magnitude images were analyzed in comparison with computed tomography. RESULTS: Unwanted phase components, dominated by the B1 phase, were removed from the UTE phase images. The rating of the diagnostic quality of BME visualization showed a high preference for the sUTE-Dixon water- and fat-separated images in comparison with STIR. The UTE magnitude images enabled better visualizing fracture lines compared with STIR and slightly better visibility of cortical outlining. With increasing SWI weighting osseous structures and fatty tissues were enhanced. CONCLUSION: The proposed sUTE-Dixon-SWI methodology allows the removal of unwanted low-frequency phases and enables water-fat separation and SWI processing from a single complex UTE image. The methodology can be used for the simultaneous assessment of vertebral fractures and BME of the thoracolumbar spine.


Asunto(s)
Imagen por Resonancia Magnética , Agua , Edema/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Columna Vertebral , Tomografía Computarizada por Rayos X/métodos
6.
MAGMA ; 35(2): 223-234, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34687369

RESUMEN

OBJECTIVE: To visualize the encoding capability of magnetic resonance fingerprinting (MRF) dictionaries. MATERIALS AND METHODS: High-dimensional MRF dictionaries were simulated and embedded into a lower-dimensional space using t-distributed stochastic neighbor embedding (t-SNE). The embeddings were visualized via colors as a surrogate for location in low-dimensional space. First, we illustrate this technique on three different MRF sequences. We then compare the resulting embeddings and the color-coded dictionary maps to these obtained with a singular value decomposition (SVD) dimensionality reduction technique. We validate the t-SNE approach with measures based on existing quantitative measures of encoding capability using the Euclidean distance. Finally, we use t-SNE to visualize MRF sequences resulting from an MRF sequence optimization algorithm. RESULTS: t-SNE was able to show clear differences between the color-coded dictionary maps of three MRF sequences. SVD showed smaller differences between different sequences. These findings were confirmed by quantitative measures of encoding. t-SNE was also able to visualize differences in encoding capability between subsequent iterations of an MRF sequence optimization algorithm. DISCUSSION: This visualization approach enables comparison of the encoding capability of different MRF sequences. This technique can be used as a confirmation tool in MRF sequence optimization.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen
7.
Magn Reson Med ; 86(3): 1701-1717, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33955588

RESUMEN

PURPOSE: To improve the robustness of diffusion-weighted imaging (DWI) data acquired with segmented simultaneous multi-slice (SMS) echo-planar imaging (EPI) against in-plane and through-plane rigid motion. THEORY AND METHODS: The proposed algorithm incorporates a 3D rigid motion correction and wavelet denoising into the image reconstruction of segmented SMS-EPI diffusion data. Low-resolution navigators are used to estimate shot-specific diffusion phase corruptions and 3D rigid motion parameters through SMS-to-volume registration. The shot-wise rigid motion and phase parameters are integrated into a SENSE-based full-volume reconstruction for each diffusion direction. The algorithm is compared to a navigated SMS reconstruction without gross motion correction in simulations and in vivo studies with four-fold interleaved 3-SMS diffusion tensor acquisitions. RESULTS: Simulations demonstrate high fidelity was achieved in the SMS-to-volume registration, with submillimeter registration errors and improved image reconstruction quality. In vivo experiments validate successful artifact reduction in 3D motion-compromised in vivo scans with a temporal motion resolution of approximately 0.3 s. CONCLUSION: This work demonstrates the feasibility of retrospective 3D rigid motion correction from shot navigators for segmented SMS DWI.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen Eco-Planar , Algoritmos , Artefactos , Encéfalo/diagnóstico por imagen , Movimiento (Física) , Reproducibilidad de los Resultados , Estudios Retrospectivos
8.
Magn Reson Med ; 85(6): 3060-3070, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33604921

RESUMEN

PURPOSE: Non-Cartesian imaging sequences involve sampling during rapid variation of the encoding field gradients. The quality of the reconstructed images often suffers from insufficient knowledge of the exact dynamics of the actual fields applied during sampling. METHODS: We propose determination of the accurate field dynamics by measuring the currents at the gradient amplifier outputs using the amplifiers' internal sensors concurrently with imaging. The actual dynamic field evolution is then determined by convolution with the measured current-to-field impulse response function of the gradient coil. Integration of the gradient field evolution allows derivation of the k-space trajectory for reconstruction. RESULTS: The current-based approach is investigated in spiral and ultrashort TE phantom imaging. In comparison with the model-based product reconstruction as well as a correction approach based on the conventional input waveform-to-field impulse response function, it provides slightly improved image quality. The improvement is ascribed to a better representation of eddy current and amplifier nonlinearity effects. CONCLUSION: Trajectory calculation based on measured amplifier output currents offers a robust, purely measurement-based alternative to conventional model-based approaches. The implementation can mitigate gradient amplifier imperfections with no or little additional hardware effort.


Asunto(s)
Artefactos , Procesamiento de Imagen Asistido por Computador , Algoritmos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Lectura
9.
Magn Reson Med ; 86(6): 3034-3051, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34255392

RESUMEN

PURPOSE: To develop a new water-fat separation and B0 estimation algorithm to effectively suppress the multiple resonances of fat signal in EPI. This is especially relevant for DWI where fat is often a confounding factor. METHODS: Water-fat separation based on chemical-shift encoding enables robust fat suppression in routine MRI. However, for EPI the different chemical-shift displacements of the multiple fat resonances along the phase-encoding direction can be problematic for conventional separation algorithms. This work proposes a suitable model approximation for EPI under B0 and fat off-resonance effects, providing a feasible multi-peak water-fat separation algorithm. Simulations were performed to validate the algorithm. In vivo validation was performed in 6 volunteers, acquiring spin-echo EPI images in the leg (B0 homogeneous) and head-neck (B0 inhomogeneous) regions, using a TE-shifted interleaved EPI sequence with/without diffusion sensitization. The results are numerically and statistically compared with voxel-independent water-fat separation and fat saturation techniques to demonstrate the performance of the proposed algorithm. RESULTS: The reference separation algorithm without the proposed spatial shift correction caused water-fat ambiguities in simulations and in vivo experiments. Some spectrally selective fat saturation approaches also failed to suppress fat in regions with severe B0 inhomogeneities. The proposed algorithm was able to achieve improved fat suppression for DWI data and ADC maps in the head-neck and leg regions. CONCLUSION: The proposed algorithm shows improved suppression of the multi-peak fat components in multi-shot interleaved EPI applications compared to the conventional fat saturation approaches and separation algorithms.


Asunto(s)
Imagen Eco-Planar , Agua , Algoritmos , Imagen de Difusión por Resonancia Magnética , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética
10.
Magn Reson Med ; 85(4): 2001-2015, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33251655

RESUMEN

PURPOSE: UTE sequences typically acquire data during the ramping up of the gradient fields, which makes UTE imaging prone to eddy current and system delay effects. The purpose of this work was to use a simple gradient impulse response function (GIRF) measurement to estimate the real readout gradient waveform and to demonstrate that precise knowledge of the gradient waveform is important in the context of high-resolution UTE musculoskeletal imaging. METHODS: The GIRF was measured using the standard hardware of a 3 Tesla scanner and applied on 3D radial UTE data (TE: 0.14 ms). Experiments were performed on a phantom, in vivo on a healthy knee, and in vivo on patients with spine fractures. UTE images were reconstructed twice, first using the GIRF-corrected gradient waveforms and second using nominal-corrected waveforms, correcting for the low-pass filter characteristic of the gradient chain. RESULTS: Images reconstructed with the nominal-corrected gradient waveforms exhibited blurring and showed edge artifacts. The blurring and the edge artifacts were reduced when the GIRF-corrected gradient waveforms were used, as shown in single-UTE phantom scans and in vivo dual-UTE gradient-echo scans in the knee. Further, the importance of the GIRF-based correction was indicated in UTE images of the lumbar spine, where thin bone structures disappeared when the nominal correction was employed. CONCLUSION: The presented GIRF-based trajectory correction method using standard scanner hardware can improve the quality of high-resolution UTE musculoskeletal imaging.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Sistema Musculoesquelético , Artefactos , Humanos , Imagen por Resonancia Magnética , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA