Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34857637

RESUMEN

Reading and writing DNA were once the rate-limiting step in synthetic biology workflows. This has been replaced by the search for the optimal target sequences to produce systems with desired properties. Directed evolution and screening mutant libraries are proven technologies for isolating strains with enhanced performance whenever specialized assays are available for rapidly detecting a phenotype of interest. Armed with technologies such as CRISPR-Cas9, these experiments are capable of generating libraries of up to 1010 genetic variants. At a rate of 102 samples per day, standard analytical methods for assessing metabolic phenotypes represent a major bottleneck to modern synthetic biology workflows. To address this issue, we have developed a desorption electrospray ionization-imaging mass spectrometry screening assay that directly samples microorganisms. This technology increases the throughput of metabolic measurements by reducing sample preparation and analyzing organisms in a multiplexed fashion. To further accelerate synthetic biology workflows, we utilized untargeted acquisitions and unsupervised analytics to assess multiple targets for future engineering strategies within a single acquisition. We demonstrate the utility of the developed method using Escherichia coli strains engineered to overproduce free fatty acids. We determined discrete metabolic phenotypes associated with each strain, which include the primary fatty acid product, secondary products, and additional metabolites outside the engineered product pathway. Furthermore, we measured changes in amino acid levels and membrane lipid composition, which affect cell viability. In sum, we present an analytical method to accelerate synthetic biology workflows through rapid, untargeted, and multiplexed metabolomic analyses.


Asunto(s)
Metabolómica/métodos , Microbiota/fisiología , Espectrometría de Masa por Ionización de Electrospray/métodos , Variación Biológica Poblacional , Ácidos Grasos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Biología Sintética/métodos
2.
Metab Eng ; 60: 56-65, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32222320

RESUMEN

Isotopically nonstationary metabolic flux analysis (INST-MFA) provides a versatile platform to quantitatively assess in vivo metabolic activities of autotrophic systems. By applying INST-MFA to recombinant aldehyde-producing cyanobacteria, we identified metabolic alterations that correlated with increased strain performance in order to guide rational metabolic engineering. We identified four reactions adjacent to the pyruvate node that varied significantly with increasing aldehyde production: pyruvate kinase (PK) and acetolactate synthase (ALS) fluxes were directly correlated with product formation, while pyruvate dehydrogenase (PDH) and phosphoenolpyruvate carboxylase (PPC) fluxes were inversely correlated. Overexpression of enzymes for PK or ALS did not result in further improvements to the previous best-performing strain, while downregulation of PDH expression (through antisense RNA expression) or PPC flux (through expression of the reverse reaction, phosphoenolpyruvate carboxykinase) provided significant improvements. These results illustrate the potential of INST-MFA to enable a systematic approach for iterative identification and removal of pathway bottlenecks in autotrophic host cells.


Asunto(s)
Aldehídos/metabolismo , Synechococcus/metabolismo , Acetolactato Sintasa/metabolismo , Aminoácidos/metabolismo , Ingeniería Metabólica , Análisis de Flujos Metabólicos , Fosfoenolpiruvato Carboxilasa/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Piruvato Quinasa/metabolismo , Piruvatos/metabolismo , ARN Bacteriano/biosíntesis , ARN Bacteriano/genética
3.
Mol Omics ; 19(8): 640-652, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37338418

RESUMEN

Drought alone causes more annual loss in crop yield than the sum of all other environmental stresses. There is growing interest in harnessing the potential of stress-resilient PGPR in conferring plant resistance and enhancing crop productivity in drought-affected agroecosystems. A detailed understanding of the complex physiological and biochemical responses will open up the avenues to stress adaptation mechanisms of PGPR communities under drought. It will pave the way for rhizosphere engineering through metabolically engineered PGPR. Therefore, to reveal the physiological and metabolic networks in response to drought-mediated osmotic stress, we performed biochemical analyses and applied untargeted metabolomics to investigate the stress adaptation mechanisms of a PGPR Enterobacter bugendensis WRS7 (Eb WRS7). Drought caused oxidative stress and resulted in slower growth rates in Eb WRS7. However, Eb WRS7 could tolerate drought stress and did not show changes in cell morphology under stress conditions. Overproduction of ROS caused lipid peroxidation (increment in MDA) and eventually activated antioxidant systems and cell signalling cascades, which led to the accumulation of ions (Na+, K+, and Ca2+), osmolytes (proline, exopolysaccharides, betaine, and trehalose), and modulated lipid dynamics of the plasma membranes for osmosensing and osmoregulation, suggesting an osmotic stress adaption mechanism in PGPR Eb WRS7. Finally, GC-MS-based metabolite profiling and deregulated metabolic responses highlighted the role of osmolytes, ions, and intracellular metabolites in regulating Eb WRS7 metabolism. Our results suggest that understanding the role of metabolites and metabolic pathways can be exploited for future metabolic engineering of PGPR and developing bio inoculants for plant growth promotion under drought-affected agroecosystems.


Asunto(s)
Sequías , Desarrollo de la Planta , Enterobacter , Estrés Oxidativo
4.
Trends Microbiol ; 31(11): 1118-1130, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37331829

RESUMEN

Cyanobacteria generate energy from photosynthesis and produce various secondary metabolites with diverse commercial and pharmaceutical applications. Unique metabolic and regulatory pathways in cyanobacteria present new challenges for researchers to enhance their product yields, titers, and rates. Therefore, further advancements are critically needed to establish cyanobacteria as a preferred bioproduction platform. Metabolic flux analysis (MFA) quantitatively determines the intracellular flows of carbon within complex biochemical networks, which elucidate the control of metabolic pathways by transcriptional, translational, and allosteric regulatory mechanisms. The emerging field of systems metabolic engineering (SME) involves the use of MFA and other omics technologies to guide the rational development of microbial production strains. This review highlights the potential of MFA and SME to optimize the production of cyanobacterial secondary metabolites and discusses the technical challenges that lie ahead.


Asunto(s)
Cianobacterias , Ingeniería Metabólica , Metabolismo Secundario , Fotosíntesis , Redes y Vías Metabólicas/genética , Cianobacterias/genética , Cianobacterias/metabolismo
5.
Trends Biotechnol ; 41(5): 701-713, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36566140

RESUMEN

The use of nitrogen (N) fertilizers in agriculture has a great ability to increase crop productivity. However, their excessive use has detrimental effects on the environment. Therefore, it is necessary to develop crop varieties with improved nitrogen use efficiency (NUE) that require less N but have substantial yields. Orphan crops such as millets are cultivated in limited regions and are well adapted to lower input conditions. Therefore, they serve as a rich source of beneficial traits that can be transferred into major crops to improve their NUE. This review highlights the tremendous potential of systems biology to unravel the enzymes and pathways involved in the N metabolism of millets, which can open new possibilities to generate transgenic crops with improved NUE.


Asunto(s)
Ingeniería Metabólica , Nitrógeno , Nitrógeno/metabolismo , Mijos/metabolismo , Productos Agrícolas/genética , Agricultura , Fertilizantes
6.
Front Microbiol ; 14: 1121781, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065162

RESUMEN

Post flowering stalk rot (PFSR) of maize caused by the Fusarium species complex is a serious threat to maize production worldwide. The identification of Fusarium species causing PFSR based on morphology traditionally relies on a small set of phenomic characteristics with only minor morphological variations among distinct Fusarium species. Seventy-one isolates were collected from 40 sites in five agro-climatic zones of India to assess the diversity of Fusarium spp. associated with maize crops showing symptoms of PFSR in the field. To investigate the pathogenicity of Fusarium spp. causing PFSR sixty isolates were toothpick inoculated between the first and second node at 55 days after sowing during the tassel formation stage of the crop in Kharif (Rainy season), and Rabi (Winter season) season field trials. Ten most virulent Fusarium isolates, based on the highest observed disease index, were identified by homology and phylogenetic analyses of partial sequences of the translation elongation factor 1 α (Tef-1α). Based on morphological traits such as mycelial growth patterns and mycelial pigmentation, Fusarium isolates were divided into nine clusters. The isolates were judged to be virulent based on their ability to decrease seedling vigour in in-vivo situations and high disease severity in field experiments. Pathogenicity test during the Kharif season showed 12 isolates with virulent disease symptoms with a mean severity ranging between 50 to 67 percent disease index (PDI) whereas in Rabi season, only five isolates were considered virulent, and the mean severity ranged between 52 to 67 PDI. Based on pathological characterization and molecular identification, 10 strains of Fusarium species namely, Fusarium acutatum (2/10), Fusarium verticillioides (Syn. Gibberella fujikuroi var. moniliformis) (7/10), Fusarium andiyazi (2/10) recorded the highest diseases index. All these species are part of the Fusarium fujikuroi species complex (FFSC). The distribution of virulent isolates is specific to a geographical location with a hot humid climate. Increased knowledge regarding the variability of Fusarium spp. responsible for PFSR of maize occurring across wide geographical locations of India will enable more informed decisions to be made to support the management of the disease, including screening for resistance in maize-inbred lines.

7.
Front Plant Sci ; 13: 902536, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035707

RESUMEN

The ever-changing climate and the current COVID-19 pandemic compound the problems and seriously impact agriculture production, resulting in socio-economic insecurities and imposing health implications globally. Most of the poor and malnourished population in the developing countries depends on agriculture for food, income, and employment. Impact of climate change together with the COVID-19 outbreak revealed immense problems highlighting the importance of mainstreaming climate-resilient and low input crops with more contemporary agriculture practices. Orphan millets play a vital role in the poor and malnourished population's livelihood, food and nutrition security. Recognizing their unique potential, the United Nations-Food and Agriculture Organization has announced the year 2023 as the "International Year of Millets". However, despite the unique properties for present and future agriculture of orphan millets, their cultivation is declining in many countries. As a result, millets have gained attention from researchers which eventually decelerated "multi-omics" resource generation. This review summarizes the benefits of millets and major barriers/ bottlenecks in their improvement. We also discuss the pre- and post-harvest technologies; policies required to introduce and establish millets in mainstream agriculture. To improve and ensure the livelihood of the poor/malnourished population, intensive efforts are urgently needed in advancing the research and development, implementing pre- and post-harvest technological intervention strategies, and making favorable policies for orphan crops to accomplish food and nutrition security. National and international collaborations are also indispensable to address the uncertain effects of climate change and COVID-19.

8.
Front Microbiol ; 7: 1440, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27672388

RESUMEN

Among the different types of UV radiation, UV-B radiation (280-315 nm) has gained much attention mainly due to its increasing incidence on the Earth's surface leading to imbalances in natural ecosystems. This study deals with the effects of UV-B radiation on the proteome and gene expression in a rice phyllospheric bacterium, Enterobacter cloacae. Of the five bacteria isolated from rice leaves, E. cloacae showed the highest level of resistance to UV-B and total killing occurred after 8 h of continuous exposure to UV-B. Reactive oxygen species were induced by UV-B exposure and increased with increasing duration of exposure. Protein profiling by SDS-PAGE and 2-dimensional gel electrophoresis (2-DE) revealed major changes in the number as well as expression of proteins. Analysis of 2-DE gel spots indicated up/down-regulation of several proteins under the stress of UV-B radiation. Thirteen differentially expressed proteins including two hypothetical proteins were identified by MALDI-TOF MS and assigned to eight functional categories. Both the hypothetical proteins (gi 779821175 and gi 503938301) were over-expressed after UV-B irradiation; gi 503938301 was characterized as a member of FMN reductase superfamily whereas gi 779821175 seems to be a structural protein as it did not show any functional domain. That the expression of certain proteins under UV-B stress is indeed up-regulated was confirmed by qRT-PCR. Transcript analysis of selected gene including genes of hypothetical proteins (cp011650 and cp002886) showed over-expression under UV-B stress as compared to untreated control cultures. Although this study deals with a limited number of proteins, identification of differentially expressed proteins reported herein may prove useful in future studies especially for assessing their significance in the protection mechanism of bacteria against UV-B radiation stress.

9.
Front Microbiol ; 6: 133, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25759687

RESUMEN

For examining how UV-B radiation alters the proteome of the N2-fixing cyanobacterium, Anabaena L31, we extracted proteins from cultures irradiated with UV-B + white light and controls (white light irradiated) and analyzed the proteins using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Twenty one proteins, including two hypothetical proteins (HPs) were identified and placed in eight functional categories. However several of the proteins were housekeeping proteins involved in key metabolic processes such as carbon, amino acid biosynthesis and energy metabolism, certain proteins seem to have a role in stress (antioxidative enzymes), translation, cellular processes and reductases. Two novel HPs (all3797 and all4050) were characterized in detail. These two were over-expressed after UV-B irradiation and characterized as FAS 1 (all3797) and PRC barrel-like (all4050) proteins. Bioinformatics analysis revealed that the genes of both the HPs have promoter regions as well as transcription binding sites in their upstream region (UTR). Promoters present in all3797 genes suggest their crucial role against UV-B and certain other abiotic stresses. To our knowledge these novel proteins have not been previously reported in any Anabaena strains subjected to UV-B stress. Although we have focused our study on a limited number of proteins, results obtained shed light on the highly complicated but poorly studied aspect of UV-B radiation-mediated changes in the proteome and expression of proteins in cyanobacteria.

10.
J Photochem Photobiol B ; 138: 55-62, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-24911272

RESUMEN

In the present work, we describe a cheap, unexplored and simple procedure for the synthesis of zinc oxide nanoparticles (ZnONPs) using the cell extract of the cyanobacterium, Anabaena strain L31. An attempt was also made to conjugate synthesized ZnONPs with a UV-absorbing water soluble compound shinorine. UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, transmission electron microscopy (TEM) and TEM-selected area electron diffraction (SAED) analyses were made to elucidate the formation and characterization of ZnONPs and ZnONPs-shinorine conjugate. The synthesized ZnONPs were characterized by a sharp peak at 370 nm in UV-vis spectrum. TEM images showed the formation of spherical shaped nanoparticles with an average size of 80 nm. Results of selective area electron diffraction (SAED) pattern showed a set of rings which suggested uniform shape with hexagonal structure of ZnONPs. XRD spectra confirmed the crystalline structure of particles. Conjugation of ZnONPs with shinorine was successfully achieved at pH 7.0 and 10mM concentration of shinorine. The conjugate showed a zeta potential value of -3.75 mV as compared to +30.25 mV of ZnONPs. The change in zeta potential value of ZnONPs-shinorine conjugate was attributed to the changes in the surface functionalities after conjugation. The generation of in vivo reactive oxygen species (ROS) by Anabaena strain L31 with treatment of ZnONPs-shinorine conjugate showed approximately 75% less ROS generation as compared to ZnONPs. Properties exhibited by the ZnONPs-shinorine conjugate suggest that it may be used as a potential agent in developing environmental-friendly sunscreen filters of biological origin.


Asunto(s)
Anabaena/metabolismo , Extractos Celulares/química , Ciclohexilaminas/efectos de la radiación , Glicina/análogos & derivados , Nanopartículas del Metal/química , Rayos Ultravioleta , Óxido de Zinc/química , Anabaena/efectos de los fármacos , Ciclohexilaminas/química , Glicina/química , Glicina/efectos de la radiación , Concentración de Iones de Hidrógeno , Nanopartículas del Metal/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Temperatura
11.
J Microbiol Biotechnol ; 24(10): 1354-67, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24986675

RESUMEN

In the present work, we describe a simple, cheap, and unexplored method for "green" synthesis of silver nanoparticles using cell extracts of the cyanobacterium Anabaena doliolum. An attempt was also made to test the antimicrobial and antitumor activities of the synthesized nanoparticles. Analytical techniques, namely UV-vis spectroscopy, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and TEMselected area electron diffraction, were used to elucidate the formation and characterization of silver-cyanobacterial nanoparticles (Ag-CNPs). Results showed that the original color of the cell extract changed from reddish blue to dark brown after addition of silver nitrate solution (1 mM) within 1 h, suggesting the synthesis of Ag-CNPs. That the formation Ag-CNPs indeed occurred was also evident from the spectroscopic analysis of the reaction mixture, wherein a prominent peak at 420 nm was noted. TEM images revealed well-dispersed, spherical Ag- CNPs with a particle size in the range of 10-50 nm. The X-ray diffraction spectrum suggested a crystalline nature of the Ag-CNPs. FTIR analysis indicated the utilization of a hydroxyl (-OH) group in the formation of Ag-CNPs. Ag-CNPs exhibited strong antibacterial activity against three multidrug-resistant bacteria. Additionally, Ag-CNPs strongly affected the survival of Dalton's lymphoma and human carcinoma colo205 cells at a very low concentration. The Ag-CNPs-induced loss of survival of both cell types may be due to the induction of reactive oxygen species generation and DNA fragmentation, resulting in apoptosis. Properties exhibited by the Ag-CNP suggest that it may be used as a potential antibacterial and antitumor agent.


Asunto(s)
Anabaena/enzimología , Antibacterianos/metabolismo , Antineoplásicos/metabolismo , Mezclas Complejas/metabolismo , Nanopartículas/metabolismo , Plata/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Nanopartículas/química , Nanopartículas/ultraestructura , Plata/química , Plata/farmacología , Nitrato de Plata/metabolismo , Espectrofotometría , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Tiempo , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA