Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35193980

RESUMEN

Shrub recruitment, a key component of vegetation dynamics beyond forests, is a highly sensitive indicator of climate and environmental change. Warming-induced tipping points in Arctic and alpine treeless ecosystems are, however, little understood. Here, we compare two long-term recruitment datasets of 2,770 shrubs from coastal East Greenland and from the Tibetan Plateau against atmospheric circulation patterns between 1871 and 2010 Common Era. Increasing rates of shrub recruitment since 1871 reached critical tipping points in the 1930s and 1960s on the Tibetan Plateau and in East Greenland, respectively. A recent decline in shrub recruitment in both datasets was likely related to warmer and drier climates, with a stronger May to July El Niño Southern Oscillation over the Tibetan Plateau and a stronger June to July Atlantic Multidecadal Oscillation over Greenland. Exceeding the thermal optimum of shrub recruitment, the recent warming trend may cause soil moisture deficit. Our findings suggest that changes in atmospheric circulation explain regional climate dynamics and associated response patterns in Arctic and alpine shrub communities, knowledge that should be considered to protect vulnerable high-elevation and high-latitude ecosystems from the cascading effects of anthropogenic warming.


Asunto(s)
Desarrollo de la Planta , Temperatura , Regiones Árticas , Cambio Climático , Ecosistema , Groenlandia , Tibet
2.
Ecol Lett ; 27(4): e14403, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38577961

RESUMEN

Species interactions such as facilitation and competition play a crucial role in driving species range shifts. However, density dependence as a key feature of these processes has received little attention in both empirical and modelling studies. Herein, we used a novel, individual-based treeline model informed by rich in situ observations to quantify the contribution of density-dependent species interactions to alpine treeline dynamics, an iconic biome boundary recognized as an indicator of global warming. We found that competition and facilitation dominate in dense versus sparse vegetation scenarios respectively. The optimal balance between these two effects was identified at an intermediate vegetation thickness where the treeline elevation was the highest. Furthermore, treeline shift rates decreased sharply with vegetation thickness and the associated transition from positive to negative species interactions. We thus postulate that vegetation density must be considered when modelling species range dynamics to avoid inadequate predictions of its responses to climate warming.


Asunto(s)
Ecosistema , Árboles , Árboles/fisiología , Calentamiento Global , Cambio Climático , Clima
3.
New Phytol ; 239(2): 533-546, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37235688

RESUMEN

Trees remain sufficiently hydrated during drought by closing stomata and reducing canopy conductance (Gc ) in response to variations in atmospheric water demand and soil water availability. Thresholds that control the reduction of Gc are proposed to optimize hydraulic safety against carbon assimilation efficiency. However, the link between Gc and the ability of stem tissues to rehydrate at night remains unclear. We investigated whether species-specific Gc responses aim to prevent branch embolisms, or enable night-time stem rehydration, which is critical for turgor-dependent growth. For this, we used a unique combination of concurrent dendrometer, sap flow and leaf water potential measurements and collected branch-vulnerability curves of six common European tree species. Species-specific Gc reduction was weakly related to the water potentials at which 50% of branch xylem conductivity is lost (P50 ). Instead, we found a stronger relationship with stem rehydration. Species with a stronger Gc control were less effective at refilling stem-water storage as the soil dries, which appeared related to their xylem architecture. Our findings highlight the importance of stem rehydration for water-use regulation in mature trees, which likely relates to the maintenance of adequate stem turgor. We thus conclude that stem rehydration must complement the widely accepted safety-efficiency stomatal control paradigm.


Asunto(s)
Hojas de la Planta , Árboles , Árboles/fisiología , Hojas de la Planta/fisiología , Xilema/fisiología , Agua/fisiología , Sequías , Fluidoterapia
4.
Bioscience ; 72(3): 233-246, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35241971

RESUMEN

Tree-ring time series provide long-term, annually resolved information on the growth of trees. When sampled in a systematic context, tree-ring data can be scaled to estimate the forest carbon capture and storage of landscapes, biomes, and-ultimately-the globe. A systematic effort to sample tree rings in national forest inventories would yield unprecedented temporal and spatial resolution of forest carbon dynamics and help resolve key scientific uncertainties, which we highlight in terms of evidence for forest greening (enhanced growth) versus browning (reduced growth, increased mortality). We describe jump-starting a tree-ring collection across the continent of North America, given the commitments of Canada, the United States, and Mexico to visit forest inventory plots, along with existing legacy collections. Failing to do so would be a missed opportunity to help chart an evidence-based path toward meeting national commitments to reduce net greenhouse gas emissions, urgently needed for climate stabilization and repair.

5.
Oecologia ; 197(4): 1079-1094, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33870457

RESUMEN

Recent evidence has revealed the emergence of a megadrought in southwestern North America since 2000. Megadroughts extend for at least 2 decades, making it challenging to identify such events until they are well established. Here, we examined tree-ring growth and stable isotope ratios in Pinus ponderosa at its driest niche edge to investigate whether trees growing near their aridity limit were sensitive to the megadrought climatic pre-conditions, and were capable of informing predictive efforts. During the decade before the megadrought, trees in four populations revealed increases in the cellulose δ13C content of earlywood, latewood, and false latewood, which, based on past studies are correlated with increased intrinsic water-use efficiency. However, radial growth and cellulose δ18O were not sensitive to pre-megadrought conditions. During the 2 decades preceding the megadrought, at all four sites, the changes in δ13C were caused by the high sensitivity of needle carbon and water exchange to drought trends in key winter months, and for three of the four sites during crucial summer months. Such pre-megadrought physiological sensitivity appears to be unique for trees near their arid range limit, as similar patterns were not observed in trees in ten reference sites located along a latitudinal gradient in the same megadrought domain, despite similar drying trends. Our results reveal the utility of tree-ring δ13C to reconstruct spatiotemporal patterns during the organizational phase of a megadrought, demonstrating that trees near the arid boundaries of a species' distribution might be useful in the early detection of long-lasting droughts.


Asunto(s)
Sequías , Agua , Isótopos de Carbono/análisis , Isótopos de Oxígeno/análisis , Estaciones del Año
6.
Glob Chang Biol ; 26(4): 2463-2476, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31968145

RESUMEN

The response of forest productivity to climate extremes strongly depends on ambient environmental and site conditions. To better understand these relationships at a regional scale, we used nearly 800 observation years from 271 permanent long-term forest monitoring plots across Switzerland, obtained between 1980 and 2017. We assimilated these data into the 3-PG forest ecosystem model using Bayesian inference, reducing the bias of model predictions from 14% to 5% for forest stem carbon stocks and from 45% to 9% for stem carbon stock changes. We then estimated the productivity of forests dominated by Picea abies and Fagus sylvatica for the period of 1960-2018, and tested for productivity shifts in response to climate along elevational gradient and in extreme years. Simulated net primary productivity (NPP) decreased with elevation (2.86 ± 0.006 Mg C ha-1  year-1  km-1 for P. abies and 0.93 ± 0.010 Mg C ha-1  year-1  km-1 for F. sylvatica). During warm-dry extremes, simulated NPP for both species increased at higher and decreased at lower elevations, with reductions in NPP of more than 25% for up to 21% of the potential species distribution range in Switzerland. Reduced plant water availability had a stronger effect on NPP than temperature during warm-dry extremes. Importantly, cold-dry extremes had negative impacts on regional forest NPP comparable to warm-dry extremes. Overall, our calibrated model suggests that the response of forest productivity to climate extremes is more complex than simple shift toward higher elevation. Such robust estimates of NPP are key for increasing our understanding of forests ecosystems carbon dynamics under climate extremes.

7.
Glob Chang Biol ; 26(9): 5146-5163, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32433807

RESUMEN

A central challenge in global change research is the projection of the future behavior of a system based upon past observations. Tree-ring data have been used increasingly over the last decade to project tree growth and forest ecosystem vulnerability under future climate conditions. But how can the response of tree growth to past climate variation predict the future, when the future does not look like the past? Space-for-time substitution (SFTS) is one way to overcome the problem of extrapolation: the response at a given location in a warmer future is assumed to follow the response at a warmer location today. Here we evaluated an SFTS approach to projecting future growth of Douglas-fir (Pseudotsuga menziesii), a species that occupies an exceptionally large environmental space in North America. We fit a hierarchical mixed-effects model to capture ring-width variability in response to spatial and temporal variation in climate. We found opposing gradients for productivity and climate sensitivity with highest growth rates and weakest response to interannual climate variation in the mesic coastal part of Douglas-fir's range; narrower rings and stronger climate sensitivity occurred across the semi-arid interior. Ring-width response to spatial versus temporal temperature variation was opposite in sign, suggesting that spatial variation in productivity, caused by local adaptation and other slow processes, cannot be used to anticipate changes in productivity caused by rapid climate change. We thus substituted only climate sensitivities when projecting future tree growth. Growth declines were projected across much of Douglas-fir's distribution, with largest relative decreases in the semiarid U.S. Interior West and smallest in the mesic Pacific Northwest. We further highlight the strengths of mixed-effects modeling for reviving a conceptual cornerstone of dendroecology, Cook's 1987 aggregate growth model, and the great potential to use tree-ring networks and results as a calibration target for next-generation vegetation models.


Asunto(s)
Pseudotsuga , Cambio Climático , Ecosistema , América del Norte , Noroeste de Estados Unidos , Árboles
8.
Ecology ; 100(2): e02557, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30411785

RESUMEN

Alpine biomes are climate change hotspots, and treeline dynamics in particular have received much attention as visible evidence of climate-induced shifts in species distributions. Comparatively little is known, however, about the effects of climate change on alpine shrubline dynamics. Here, we reconstruct decadally resolved shrub recruitment history (age structure) through the combination of field surveys and dendroecology methods at the world's highest juniper (Juniperus pingii var. wilsonii) shrublines on the south-central Tibetan Plateau. A total of 1,899 shrubs were surveyed at 12 plots located in four regions along an east-to-west declining precipitation gradient. We detected synchronous recruitment with 9 out of 12 plots showing a gradual increase from 1600 to 1900, a peak at 1900-1940, and a subsequent decrease from the 1930s onward. Shrub recruitment was significantly and positively correlated with reconstructed summer temperature from 1600 to 1940, whereas it was negatively associated with temperature in recent decades (1930-2000). Recruitment was also positively correlated with precipitation, except in the 1780-1830 period, when a trend toward wetter climate conditions began. Warming-induced drought limitation has likely reduced the recruitment potential of alpine juniper shrubs in recent decades. Ongoing warming without a simultaneous increase in precipitation is expected to further impair recruitment at the world's highest juniper shrublines and alter the dynamics and competitive balance between woody plant species throughout these alpine biomes.


Asunto(s)
Juniperus , Cambio Climático , Sequías , Ecosistema , Tibet
9.
Glob Chang Biol ; 25(1): 144-154, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30295402

RESUMEN

Winter snow is an important driver of tree growth in regions where growing-season precipitation is limited. However, observational evidence of this influence at larger spatial scales and across diverse bioclimatic regions is lacking. Here, we investigated the interannual effects of winter (here defined as previous October to current February) snow depth on tree growth across temperate China over the period of 1961-2015, using a regional network of tree ring records, in situ daily snow depth observations, and gridded climate data. We report uneven effects of winter snow depth on subsequent growing-season tree growth across temperate China. There shows little effect on tree growth in drier regions that we attribute mainly to limited snow accumulation during winter. By contrast, winter snow exerts important positive influence on tree growth in stands with high winter snow accumulation (e.g., in parts of cold arid regions). The magnitude of this effect depends on the proportion of winter snow to pre-growing-season (previous October to current April) precipitation. We further observed that tree growth in drier regions tends to be increasingly limited by warmer growing-season temperature and early growing-season water availability. No compensatory effect of winter snow on the intensifying drought limitation of tree growth was observed across temperate China. Our findings point toward an increase in drought vulnerability of temperate forests in a warming climate.


Asunto(s)
Cambio Climático , Clima , Árboles/crecimiento & desarrollo , China , Ecosistema , Estaciones del Año , Nieve
10.
Glob Chang Biol ; 25(9): 3136-3150, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31166643

RESUMEN

Climatic constraints on tree growth mediate an important link between terrestrial and atmospheric carbon pools. Tree rings provide valuable information on climate-driven growth patterns, but existing data tend to be biased toward older trees on climatically extreme sites. Understanding climate change responses of biogeographic regions requires data that integrate spatial variability in growing conditions and forest structure. We analyzed both temporal (c. 1901-2010) and spatial variation in radial growth patterns in 9,876 trees from fragments of primary Picea abies forests spanning the latitudinal and altitudinal extent of the Carpathian arc. Growth was positively correlated with summer temperatures and spring moisture availability throughout the entire region. However, important seasonal variation in climate responses occurred along geospatial gradients. At northern sites, winter precipitation and October temperatures of the year preceding ring formation were positively correlated with ring width. In contrast, trees at the southern extent of the Carpathians responded negatively to warm and dry conditions in autumn of the year preceding ring formation. An assessment of regional synchronization in radial growth variability showed temporal fluctuations throughout the 20th century linked to the onset of moisture limitation in southern landscapes. Since the beginning of the study period, differences between high and low elevations in the temperature sensitivity of tree growth generally declined, while moisture sensitivity increased at lower elevations. Growth trend analyses demonstrated changes in absolute tree growth rates linked to climatic change, with basal area increments in northern landscapes and lower altitudes responding positively to recent warming. Tree growth has predominantly increased with rising temperatures in the Carpathians, accompanied by early indicators that portions of the mountain range are transitioning from temperature to moisture limitation. Continued warming will alleviate large-scale temperature constraints on tree growth, giving increasing weight to local drivers that are more challenging to predict.


Asunto(s)
Picea , Pinus , Cambio Climático , Bosques , Temperatura
11.
Glob Chang Biol ; 24(1): 504-516, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28973825

RESUMEN

In view of future changes in climate, it is important to better understand how different plant functional groups (PFGs) respond to warmer and drier conditions, particularly in temperate regions where an increase in both the frequency and severity of drought is expected. The patterns and mechanisms of immediate and delayed impacts of extreme drought on vegetation growth remain poorly quantified. Using satellite measurements of vegetation greenness, in-situ tree-ring records, eddy-covariance CO2 and water flux measurements, and meta-analyses of source water of plant use among PFGs, we show that drought legacy effects on vegetation growth differ markedly between forests, shrubs and grass across diverse bioclimatic conditions over the temperate Northern Hemisphere. Deep-rooted forests exhibit a drought legacy response with reduced growth during up to 4 years after an extreme drought, whereas shrubs and grass have drought legacy effects of approximately 2 years and 1 year, respectively. Statistical analyses partly attribute the differences in drought legacy effects among PFGs to plant eco-hydrological properties (related to traits), including plant water use and hydraulic responses. These results can be used to improve the representation of drought response of different PFGs in land surface models, and assess their biogeochemical and biophysical feedbacks in response to a warmer and drier climate.


Asunto(s)
Cambio Climático , Sequías , Bosques , Hidrología , Árboles/crecimiento & desarrollo , Agua/fisiología
12.
Ecol Lett ; 19(9): 1119-28, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27434040

RESUMEN

Predicting long-term trends in forest growth requires accurate characterisation of how the relationship between forest productivity and climatic stress varies across climatic regimes. Using a network of over two million tree-ring observations spanning North America and a space-for-time substitution methodology, we forecast climate impacts on future forest growth. We explored differing scenarios of increased water-use efficiency (WUE) due to CO2 -fertilisation, which we simulated as increased effective precipitation. In our forecasts: (1) climate change negatively impacted forest growth rates in the interior west and positively impacted forest growth along the western, southeastern and northeastern coasts; (2) shifting climate sensitivities offset positive effects of warming on high-latitude forests, leaving no evidence for continued 'boreal greening'; and (3) it took a 72% WUE enhancement to compensate for continentally averaged growth declines under RCP 8.5. Our results highlight the importance of locally adapted forest management strategies to handle regional differences in growth responses to climate change.


Asunto(s)
Cambio Climático , Árboles/crecimiento & desarrollo , Bosques , América del Norte , Temperatura
13.
Glob Chang Biol ; 21(8): 2861-80, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25752680

RESUMEN

Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon-climate feedbacks.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Ecosistema
14.
New Phytol ; 201(4): 1289-1303, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24206564

RESUMEN

• Attempts to combine biometric and eddy-covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. • We assessed above-ground biomass changes at five long-term EC forest stations based on tree-ring width and wood density measurements, together with multiple allometric models. Measurements were validated with site-specific biomass estimates and compared with the sum of monthly CO2 fluxes between 1997 and 2009. • Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible and suggested that carbon sequestered between January and July is mainly used for volume increase, whereas that taken up between August and September supports a combination of cell wall thickening and storage. The inter-annual variability in above-ground woody carbon uptake was significantly linked with wood production at the sites, ranging between 110 and 370 g C m(-2) yr(-1) , thereby accounting for 10-25% of gross primary productivity (GPP), 15-32% of terrestrial ecosystem respiration (TER) and 25-80% of NEP. • The observed seasonal partitioning of carbon used to support different wood formation processes refines our knowledge on the dynamics and magnitude of carbon allocation in forests across the major European climatic zones. It may thus contribute, for example, to improved vegetation model parameterization and provides an enhanced framework to link tree-ring parameters with EC measurements.


Asunto(s)
Secuestro de Carbono , Ecosistema , Árboles/crecimiento & desarrollo , Madera/metabolismo , Biomasa , Carbono/metabolismo , Europa (Continente) , Geografía , Estaciones del Año
15.
Glob Chang Biol ; 20(9): 2867-85, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24729489

RESUMEN

Tree-rings offer one of the few possibilities to empirically quantify and reconstruct forest growth dynamics over years to millennia. Contemporaneously with the growing scientific community employing tree-ring parameters, recent research has suggested that commonly applied sampling designs (i.e. how and which trees are selected for dendrochronological sampling) may introduce considerable biases in quantifications of forest responses to environmental change. To date, a systematic assessment of the consequences of sampling design on dendroecological and-climatological conclusions has not yet been performed. Here, we investigate potential biases by sampling a large population of trees and replicating diverse sampling designs. This is achieved by retroactively subsetting the population and specifically testing for biases emerging for climate reconstruction, growth response to climate variability, long-term growth trends, and quantification of forest productivity. We find that commonly applied sampling designs can impart systematic biases of varying magnitude to any type of tree-ring-based investigations, independent of the total number of samples considered. Quantifications of forest growth and productivity are particularly susceptible to biases, whereas growth responses to short-term climate variability are less affected by the choice of sampling design. The world's most frequently applied sampling design, focusing on dominant trees only, can bias absolute growth rates by up to 459% and trends in excess of 200%. Our findings challenge paradigms, where a subset of samples is typically considered to be representative for the entire population. The only two sampling strategies meeting the requirements for all types of investigations are the (i) sampling of all individuals within a fixed area; and (ii) fully randomized selection of trees. This result advertises the consistent implementation of a widely applicable sampling design to simultaneously reduce uncertainties in tree-ring-based quantifications of forest growth and increase the comparability of datasets beyond individual studies, investigators, laboratories, and geographical boundaries.


Asunto(s)
Cambio Climático , Bosques , Tallos de la Planta/anatomía & histología , Proyectos de Investigación , Árboles/crecimiento & desarrollo , Sesgo de Selección , Suiza , Árboles/anatomía & histología
16.
Oecologia ; 176(2): 307-22, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25119160

RESUMEN

Tree-ring records can provide valuable information to advance our understanding of contemporary terrestrial carbon cycling and to reconstruct key metrics in the decades preceding monitoring data. The growing use of tree rings in carbon-cycle research is being facilitated by increasing recognition of reciprocal benefits among research communities. Yet, basic questions persist regarding what tree rings represent at the ecosystem level, how to optimally integrate them with other data streams, and what related challenges need to be overcome. It is also apparent that considerable unexplored potential exists for tree rings to refine assessments of terrestrial carbon cycling across a range of temporal and spatial domains. Here, we summarize recent advances and highlight promising paths of investigation with respect to (1) growth phenology, (2) forest productivity trends and variability, (3) CO2 fertilization and water-use efficiency, (4) forest disturbances, and (5) comparisons between observational and computational forest productivity estimates. We encourage the integration of tree-ring data: with eddy-covariance measurements to investigate carbon allocation patterns and water-use efficiency; with remotely sensed observations to distinguish the timing of cambial growth and leaf phenology; and with forest inventories to develop continuous, annually-resolved and long-term carbon budgets. In addition, we note the potential of tree-ring records and derivatives thereof to help evaluate the performance of earth system models regarding the simulated magnitude and dynamics of forest carbon uptake, and inform these models about growth responses to (non-)climatic drivers. Such efforts are expected to improve our understanding of forest carbon cycling and place current developments into a long-term perspective.


Asunto(s)
Ciclo del Carbono , Bosques , Árboles/crecimiento & desarrollo , Dióxido de Carbono/metabolismo , Modelos Biológicos , Agua/metabolismo
17.
Sci Total Environ ; 919: 170726, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38331275

RESUMEN

The fraction of photosynthetically assimilated carbon that trees allocate to long-lasting woody biomass pools (biomass production efficiency - BPE), is a key metric of the forest carbon balance. Its apparent simplicity belies the complex interplay between underlying processes of photosynthesis, respiration, litter and fruit production, and tree growth that respond differently to climate variability. Whereas the magnitude of BPE has been routinely quantified in ecological studies, its temporal dynamics and responses to extreme events such as drought remain less well understood. Here, we combine long-term records of aboveground carbon increment (ACI) obtained from tree rings with stand-level gross primary productivity (GPP) from eddy covariance (EC) records to empirically quantify aboveground BPE (= ACI/GPP) and its interannual variability in two European beech forests (Hainich, DE-Hai, Germany; Sorø, DK-Sor, Denmark). We found significant negative correlations between BPE and a daily-resolved drought index at both sites, indicating that woody growth is de-prioritized under water limitation. During identified extreme years, early-season drought reduced same-year BPE by 29 % (Hainich, 2011), 31 % (Sorø, 2006), and 14 % (Sorø, 2013). By contrast, the 2003 late-summer drought resulted in a 17 % reduction of post-drought year BPE at Hainich. Across the entire EC period, the daily-to-seasonal drought response of BPE resembled that of ACI, rather than that of GPP. This indicates that BPE follows sink dynamics more closely than source dynamics, which appear to be decoupled given the distinctive climate response patterns of GPP and ACI. Based on our observations, we caution against estimating the magnitude and variability of the carbon sink in European beech (and likely other temperate forests) based on carbon fluxes alone. We also encourage comparable studies at other long-term EC measurement sites from different ecosystems to further constrain the BPE response to rare climatic events.


Asunto(s)
Ecosistema , Fagus , Biomasa , Fagus/fisiología , Sequías , Bosques , Carbono , Cambio Climático
18.
Nat Commun ; 14(1): 6616, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857605

RESUMEN

Although the global climate is warming, external forcing driven by explosive volcanic eruptions may still cause abrupt cooling. The 1809 and 1815 Tambora eruptions caused lasting cold extremes worldwide, providing a unique lens that allows us to investigate the magnitude of global forest resilience to and recovery from volcanic cooling. Here, we show that growth resilience inferred from tree-ring data was severely impacted by cooling in high latitudes and elevations: the average tree growth decreased substantially (up to 31.8%), especially in larch forests, and regional-scale probabilities of severe growth reduction (below -2σ) increased up to 1390%. The influence of the eruptions extended longer (beyond the year 1824) in mid- than in high-latitudes, presumably due to the combined impacts of cold and drought stress. As Tambora-size eruptions statistically occur every 200-400 years, assessing their influences on ecosystems can help humankind mitigate adverse impacts on natural resources through improved management, especially in high latitude and elevation regions.

19.
Sci Total Environ ; 872: 162167, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36775147

RESUMEN

Forests account for nearly 90 % of the world's terrestrial biomass in the form of carbon and they support 80 % of the global biodiversity. To understand the underlying forest dynamics, we need a long-term but also relatively high-frequency, networked monitoring system, as traditionally used in meteorology or hydrology. While there are numerous existing forest monitoring sites, particularly in temperate regions, the resulting data streams are rarely connected and do not provide information promptly, which hampers real-time assessments of forest responses to extreme climate events. The technology to build a better global forest monitoring network now exists. This white paper addresses the key structural components needed to achieve a novel meta-network. We propose to complement - rather than replace or unify - the existing heterogeneous infrastructure with standardized, quality-assured linking methods and interacting data processing centers to create an integrated forest monitoring network. These automated (research topic-dependent) linking methods in atmosphere, biosphere, and pedosphere play a key role in scaling site-specific results and processing them in a timely manner. To ensure broad participation from existing monitoring sites and to establish new sites, these linking methods must be as informative, reliable, affordable, and maintainable as possible, and should be supplemented by near real-time remote sensing data. The proposed novel meta-network will enable the detection of emergent patterns that would not be visible from isolated analyses of individual sites. In addition, the near real-time availability of data will facilitate predictions of current forest conditions (nowcasts), which are urgently needed for research and decision making in the face of rapid climate change. We call for international and interdisciplinary efforts in this direction.

20.
Nat Ecol Evol ; 6(4): 397-404, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35228669

RESUMEN

Climatic warming alters the onset, duration and cessation of the vegetative season. While previous studies have shown a tight link between thermal conditions and leaf phenology, less is known about the impacts of phenological changes on tree growth. Here, we assessed the relationships between the start of the thermal growing season and tree growth across the extratropical Northern Hemisphere using 3,451 tree-ring chronologies and daily climatic data for 1948-2014. An earlier start of the thermal growing season promoted growth in regions with high ratios of precipitation to temperature but limited growth in cold-dry regions. Path analyses indicated that an earlier start of the thermal growing season enhanced growth primarily by alleviating thermal limitations on wood formation in boreal forests and by lengthening the period of growth in temperate and Mediterranean forests. Semi-arid and dry subalpine forests, however, did not benefit from an earlier onset of growth and a longer growing season, presumably due to associated water loss and/or more frequent early spring frosts. These emergent patterns of how climatic impacts on wood phenology affect tree growth at regional to hemispheric scales hint at how future phenological changes may affect the carbon sequestration capacity of extratropical forest ecosystems.


Asunto(s)
Ecosistema , Árboles , Frío , Bosques , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA