RESUMEN
The transparent-conducting performance is estimated through figure-of-merit (FOM) value. To improve poor FOM value of pure ZnO thin films, boron (B) as a donor impurity was doped into the films. Direct-current magnetron sputtering was used to prepare B-doped ZnO (BZO) thin films from sintered ZnO targets with variable B2O3 content changing from 0 to 2 wt. %. The x ray diffraction analysis confirmed the preferably c-axis-oriented structure of hexagonal wurtzite ZnO host. The results also showed variation in the film structure versus the B2O3 content through calculations of crystal size and residual stress. Depending on the B2O3 content, a competition of interstitial and substitutional B3+ ions induced more stress or relaxation in lattice structure of the films. At 1% B2O3, the BZO thin film had the best crystalline characterization with the lowest stress and large crystal size. In consequence, the BZO 1% film obtained the lowest resistivity of 2.7×10-3Ωcm, average transmittance of 82.1%, and the best FOM value of 18.8×102Ω-1cm-1. The transparent-conducting performance of the ZnO thin films deposited by direct-current (DC) magnetron sputtering was significantly enhanced through B doping. The good-performance BZO film at 1% B2O3 is believed to be of use as electrodes in thin-film solar cells.
RESUMEN
We present in this study a theoretical investigation of the collision of Li with the MX2 surface (MoSe2 or WS2) by employing the Born-Oppenheimer molecular dynamics (MD) approach. In each trajectory, atomic Li is fired toward the two-dimensional monolayer with an inletting kinetic energy of 0.2 eV or 2.0 eV and a chosen striking angle. In total, 84 MD trajectories are analyzed. We observe that Li has a high tendency to migrate on WS2 in most investigated cases (20/21 cases at 0.2 eV inletting kinetic energy and 21/21 cases at 2.0 eV inletting kinetic energy), while the migration probability on MoSe2 is much lower (only 5/21 cases with the inletting kinetic energy of 0.2 eV and 15/21 cases with the inletting kinetic energy of 2.0 eV). Interestingly, our finding shows that the migration probability does not depend on the binding energies of Li-MoSe2 (1.61 eV) and Li-WS2 (1.77 eV), but it is in good agreement with the nudged-elastic-band prediction of migration barriers. In fact, it is the intensity of elastic vibration of the transition metal dichalcogenide layer that plays a very significant role in the migration of Li. During the collision process, Li is able to absorb energy from the layer vibration to jump out from one X-X-X trap to another. Consequently, with the assistance from intensive vibration of WS2, Li would possess higher migration probability on the layer surface. Finally, electronic structure analysis on various interacting Li-MX2 configurations is performed. From Bader charge estimation, we observe that WS2 tends to establish more charge transferability with Li. Moreover, when Li approaches closer to the S/Se layer, the hybridization of Li-2s and Mo-4d (or W-5d) orbitals results in a magnetic moment (up to â¼1 µB).