Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(28): 7786-91, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27357676

RESUMEN

Scaffolding proteins organize the information flow from activated G protein-coupled receptors (GPCRs) to intracellular effector cascades both spatially and temporally. By this means, signaling scaffolds, such as A-kinase anchoring proteins (AKAPs), compartmentalize kinase activity and ensure substrate selectivity. Using a phosphoproteomics approach we identified a physical and functional connection between protein kinase A (PKA) and Gpr161 (an orphan GPCR) signaling. We show that Gpr161 functions as a selective high-affinity AKAP for type I PKA regulatory subunits (RI). Using cell-based reporters to map protein-protein interactions, we discovered that RI binds directly and selectively to a hydrophobic protein-protein interaction interface in the cytoplasmic carboxyl-terminal tail of Gpr161. Furthermore, our data demonstrate that a binary complex between Gpr161 and RI promotes the compartmentalization of Gpr161 to the plasma membrane. Moreover, we show that Gpr161, functioning as an AKAP, recruits PKA RI to primary cilia in zebrafish embryos. We also show that Gpr161 is a target of PKA phosphorylation, and that mutation of the PKA phosphorylation site affects ciliary receptor localization. Thus, we propose that Gpr161 is itself an AKAP and that the cAMP-sensing Gpr161:PKA complex acts as cilium-compartmentalized signalosome, a concept that now needs to be considered in the analyzing, interpreting, and pharmaceutical targeting of PKA-associated functions.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteína Quinasa Tipo I Dependiente de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Luciferasas de Renilla , Ratones , Fosforilación , Pez Cebra
2.
Proc Natl Acad Sci U S A ; 112(14): 4501-6, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25831502

RESUMEN

Cellular processes and homeostasis control in eukaryotic cells is achieved by the action of regulatory proteins such as protein kinase A (PKA). Although the outbound signals from PKA directed to processes such as metabolism, growth, and aging have been well charted, what regulates this conserved regulator remains to be systematically identified to understand how it coordinates biological processes. Using a yeast PKA reporter assay, we identified genes that influence PKA activity by measuring protein-protein interactions between the regulatory and the two catalytic subunits of the PKA complex in 3,726 yeast genetic-deletion backgrounds grown on two carbon sources. Overall, nearly 500 genes were found to be connected directly or indirectly to PKA regulation, including 80 core regulators, denoting a wide diversity of signals regulating PKA, within and beyond the described upstream linear pathways. PKA regulators span multiple processes, including the antagonistic autophagy and methionine biosynthesis pathways. Our results converge toward mechanisms of PKA posttranslational regulation by lysine acetylation, which is conserved between yeast and humans and that, we show, regulates protein complex formation in mammals and carbohydrate storage and aging in yeast. Taken together, these results show that the extent of PKA input matches with its output, because this kinase receives information from upstream and downstream processes, and highlight how biological processes are interconnected and coordinated by PKA.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Transducción de Señal , Acetilación , Secuencia de Aminoácidos , Animales , Autofagia , AMP Cíclico/metabolismo , Galactosa/química , Glucosa/química , Células HEK293 , Homeostasis , Humanos , Luciferasas de Renilla/metabolismo , Metionina/química , Datos de Secuencia Molecular , Filogenia , Procesamiento Proteico-Postraduccional , Ratas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Serina-Treonina Quinasas TOR/metabolismo
3.
Bioconjug Chem ; 27(7): 1624-37, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27253729

RESUMEN

Glycosphingolipids are an important component of cell membranes that are involved in many biological processes. Fluorescently labeled glycosphingolipids are frequently used to gain insight into their localization. However, the attachment of a fluorophore to the glycan part or-more commonly-to the lipid part of glycosphingolipids is known to alter the biophysical properties and can perturb the biological function of the probe. Presented here is the synthesis of novel glycosphingolipid probes with mono- and disaccharide head groups and ceramide moieties containing fatty acids of varying chain length (C4 to C20). These glycosphingolipids bear an azide or an alkyne group as chemical reporter to which a fluorophore can be attached through a bioorthogonal ligation reaction. The fluorescent tag and any linker connected to it can be chosen in a flexible manner. We demonstrate the suitability of the probes by selective visualization of the plasma membrane of living cells by confocal microscopy techniques. Whereas the derivatives with the shorter fatty acids can be directly applied to HEK 293T cells, the hydrophobic glycosphingolipids with longer fatty acids can be delivered to cells using fusogenic liposomes.


Asunto(s)
Glicoesfingolípidos/química , Glicoesfingolípidos/metabolismo , Alquinos/química , Azidas/química , Membrana Celular/metabolismo , Supervivencia Celular , Química Clic , Colorantes Fluorescentes/química , Glicoesfingolípidos/síntesis química , Células HEK293 , Humanos , Coloración y Etiquetado
4.
Proc Natl Acad Sci U S A ; 110(21): 8531-6, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23657011

RESUMEN

Activated G protein-coupled receptors (GPCRs) and receptor tyrosine kinases relay extracellular signals through spatial and temporal controlled kinase and GTPase entities. These enzymes are coordinated by multifunctional scaffolding proteins for precise intracellular signal processing. The cAMP-dependent protein kinase A (PKA) is the prime example for compartmentalized signal transmission downstream of distinct GPCRs. A-kinase anchoring proteins tether PKA to specific intracellular sites to ensure precision and directionality of PKA phosphorylation events. Here, we show that the Rho-GTPase Rac contains A-kinase anchoring protein properties and forms a dynamic cellular protein complex with PKA. The formation of this transient core complex depends on binary interactions with PKA subunits, cAMP levels and cellular GTP-loading accounting for bidirectional consequences on PKA and Rac downstream signaling. We show that GTP-Rac stabilizes the inactive PKA holoenzyme. However, ß-adrenergic receptor-mediated activation of GTP-Rac-bound PKA routes signals to the Raf-Mek-Erk cascade, which is critically implicated in cell proliferation. We describe a further mechanism of how cAMP enhances nuclear Erk1/2 signaling: It emanates from transphosphorylation of p21-activated kinases in their evolutionary conserved kinase-activation loop through GTP-Rac compartmentalized PKA activities. Sole transphosphorylation of p21-activated kinases is not sufficient to activate Erk1/2. It requires complex formation of both kinases with GTP-Rac1 to unleash cAMP-PKA-boosted activation of Raf-Mek-Erk. Consequently GTP-Rac functions as a dual kinase-tuning scaffold that favors the PKA holoenzyme and contributes to potentiate Erk1/2 signaling. Our findings offer additional mechanistic insights how ß-adrenergic receptor-controlled PKA activities enhance GTP-Rac-mediated activation of nuclear Erk1/2 signaling.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Complejos Multienzimáticos/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Línea Celular Tumoral , AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Femenino , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Complejos Multienzimáticos/genética , Fosforilación/fisiología , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Proteína de Unión al GTP rac1/genética , Quinasas raf/genética , Quinasas raf/metabolismo
5.
J Biol Chem ; 288(11): 7618-7625, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23341465

RESUMEN

The type VI secretion system (T6SS) of Gram-negative bacteria has been implicated in microbial competition; however, which components serve purely structural roles, and which serve as toxic effectors remains unresolved. Here, we present evidence that VgrG-3 of the Vibrio cholerae T6SS has both structural and toxin activity. Specifically, we demonstrate that the C-terminal extension of VgrG-3 acts to degrade peptidoglycan and hypothesize that this assists in the delivery of accessory T6SS toxins of V. cholerae. To avoid self-intoxication, V. cholerae expresses an anti-toxin encoded immediately downstream of vgrG-3 that inhibits VgrG-3-mediated lysis through direct interaction.


Asunto(s)
Antitoxinas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Sistemas de Secreción Bacterianos/fisiología , Regulación Bacteriana de la Expresión Génica , Vibrio cholerae/metabolismo , Antitoxinas/fisiología , Pared Celular/metabolismo , Clonación Molecular , Biología Computacional/métodos , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Modelos Biológicos , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Virulencia , Factores de Virulencia/metabolismo
6.
J Biol Chem ; 286(11): 9555-66, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21216968

RESUMEN

Carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3) is an immunoglobulin-related receptor expressed on human granulocytes. CEACAM3 functions as a single chain phagocytotic receptor recognizing gram-negative bacteria such as Neisseria gonorrhoeae, which possess CEACAM-binding adhesins on their surface. The cytoplasmic domain of CEACAM3 contains an immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is phosphorylated upon receptor engagement. Here we show that the SH2 domains of the regulatory subunit of phosphatidylinositol 3'-kinase (PI3K) bind to tyrosine residue 230 of CEACAM3 in a phosphorylation-dependent manner. PI3K is rapidly recruited and directly associates with CEACAM3 upon bacterial binding as shown by FRET analysis. Although PI3K activity is not required for efficient uptake of the bacteria by CEACAM3-transfected cells or primary human granulocytes, it is critical for the stimulated production of reactive oxygen species by infected phagocytes and the intracellular degradation of CEACAM-binding bacteria. Together, our results highlight the ability of CEACAM3 to coordinate signaling events that not only mediate bacterial uptake, but also trigger the killing of internalized pathogens.


Asunto(s)
Antígeno Carcinoembrionario/metabolismo , Gonorrea/metabolismo , Granulocitos/metabolismo , Neisseria gonorrhoeae/metabolismo , Fagocitosis/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Estallido Respiratorio/fisiología , Adhesinas Bacterianas/metabolismo , Antígeno Carcinoembrionario/genética , Gonorrea/genética , Células HEK293 , Humanos , Fosfatidilinositol 3-Quinasas/genética , Fosforilación/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Dominios Homologos src
7.
BMC Microbiol ; 10: 117, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20406467

RESUMEN

BACKGROUND: Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), an immunoglobulin (Ig)-related glycoprotein, serves as cellular receptor for a variety of Gram-negative bacterial pathogens associated with the human mucosa. In particular, Neisseria gonorrhoeae, N. meningitidis, Moraxella catarrhalis, and Haemophilus influenzae possess well-characterized CEACAM1-binding adhesins. CEACAM1 is typically involved in cell-cell attachment, epithelial differentiation, neovascularisation and regulation of T-cell proliferation, and is one of the few CEACAM family members with homologues in different mammalian lineages. However, it is unknown whether bacterial adhesins of human pathogens can recognize CEACAM1 orthologues from other mammals. RESULTS: Sequence comparisons of the amino-terminal Ig-variable-like domain of CEACAM1 reveal that the highest sequence divergence between human, murine, canine and bovine orthologues is found in the beta-strands comprising the bacteria-binding CC'FG-face of the Ig-fold. Using GFP-tagged, soluble amino-terminal domains of CEACAM1, we demonstrate that bacterial pathogens selectively associate with human, but not other mammalian CEACAM1 orthologues. Whereas full-length human CEACAM1 can mediate internalization of Neisseria gonorrhoeae in transfected cells, murine CEACAM1 fails to support bacterial internalization, demonstrating that the sequence divergence of CEACAM1 orthologues has functional consequences with regard to bacterial recognition and cellular invasion. CONCLUSIONS: Our results establish the selective interaction of several human-restricted bacterial pathogens with human CEACAM1 and suggest that co-evolution of microbial adhesins with their corresponding receptors on mammalian cells contributes to the limited host range of these highly adapted infectious agents.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Antígenos CD/metabolismo , Adhesión Bacteriana , Moléculas de Adhesión Celular/metabolismo , Neisseria gonorrhoeae/fisiología , Animales , Antígenos CD/genética , Bovinos , Moléculas de Adhesión Celular/genética , Perros , Humanos , Ratones , Unión Proteica , Homología de Secuencia de Aminoácido
8.
Cell Microbiol ; 10(5): 1074-92, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18081725

RESUMEN

Several bacterial pathogens exploit carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) to promote attachment and uptake into eukaryotic host cells. The widely expressed isoform CEACAM1 is involved in cell-cell adhesion, regulation of cell proliferation, insulin homeostasis, and neo-angiogenesis, processes that depend on the cytoplasmic domain of CEACAM1. By analysing the molecular requirements for CEACAM1-mediated internalization of bacteria, we surprisingly find that the CEACAM1 cytoplasmic domain is completely obsolete for bacterial uptake. Accordingly, CEACAM1-4L as well as a CEACAM1 mutant with a complete deletion of the cytoplasmic domain (CEACAM1 DeltaCT) promote equivalent internalization of several human pathogens. CEACAM1-4L- and CEACAM1 DeltaCT-mediated uptake proceeds in the presence of inhibitors of actin microfilament dynamics, which is in contrast to CEACAM3-mediated internalization. Bacteria-engaged CEACAM1-4L and CEACAM1 DeltaCT, but not CEACAM3, localize to a gangliosid GM1- and GPI-anchored protein-containing portion of the plasma membrane. In addition, interference with cholesterol-rich membrane microdomains severely blocks bacterial uptake via CEACAM1-4L and CEACAM1 DeltaCT, but not CEACAM3. Similar to GPI-anchored CEACAM6, both CEACAM1-4L as well as CEACAM1 DeltaCT partition into a low-density, Triton-insoluble membrane fraction upon receptor clustering, whereas CEACAM3 is not detected in this fraction. Bacterial uptake by truncated CEACAM1 or chimeric CEACAM1/CEACAM3 molecules reveals that the transmembrane domain of CEACAM1 is responsible for its association with membrane microdomains. Together, these data argue for a functional role of lipid rafts in CEACAM1-mediated endocytosis that is promoted by the transmembrane domain of the receptor and that might be relevant for CEACAM1 function in physiologic settings.


Asunto(s)
Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Microdominios de Membrana/metabolismo , Neisseria gonorrhoeae/fisiología , Actinas/metabolismo , Antígenos CD/química , Moléculas de Adhesión Celular/química , Línea Celular , Colesterol/metabolismo , Citometría de Flujo , Humanos , Microscopía Electrónica de Rastreo , Fosforilación , Estructura Terciaria de Proteína , Tirosina/metabolismo
9.
Nat Commun ; 10(1): 2572, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31189917

RESUMEN

Activation of G-protein coupled receptors elevates cAMP levels promoting dissociation of protein kinase A (PKA) holoenzymes and release of catalytic subunits (PKAc). This results in PKAc-mediated phosphorylation of compartmentalized substrates that control central aspects of cell physiology. The mechanism of PKAc activation and signaling have been largely characterized. However, the modes of PKAc inactivation by regulated proteolysis were unknown. Here, we identify a regulatory mechanism that precisely tunes PKAc stability and downstream signaling. Following agonist stimulation, the recruitment of the chaperone-bound E3 ligase CHIP promotes ubiquitylation and proteolysis of PKAc, thus attenuating cAMP signaling. Genetic inactivation of CHIP or pharmacological inhibition of HSP70 enhances PKAc signaling and sustains hippocampal long-term potentiation. Interestingly, primary fibroblasts from autosomal recessive spinocerebellar ataxia 16 (SCAR16) patients carrying germline inactivating mutations of CHIP show a dramatic dysregulation of PKA signaling. This suggests the existence of a negative feedback mechanism for restricting hormonally controlled PKA activities.


Asunto(s)
Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Retroalimentación Fisiológica/fisiología , Chaperonas Moleculares/metabolismo , Ataxias Espinocerebelosas/patología , Animales , Retroalimentación Fisiológica/efectos de los fármacos , Fibroblastos , Células HEK293 , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Hipocampo/patología , Holoenzimas/metabolismo , Humanos , Leupeptinas/farmacología , Ratones , Ratones Endogámicos C57BL , Fosforilación , Cultivo Primario de Células , Unión Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Nucleósidos de Purina/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ataxias Espinocerebelosas/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología
11.
Nat Commun ; 9(1): 1224, 2018 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-29581457

RESUMEN

The primary cilium emanates from the cell surface of growth-arrested cells and plays a central role in vertebrate development and tissue homeostasis. The mechanisms that control ciliogenesis have been extensively explored. However, the intersection between GPCR signaling and the ubiquitin pathway in the control of cilium stability are unknown. Here we observe that cAMP elevation promotes cilia resorption. At centriolar satellites, we identify a multimeric complex nucleated by PCM1 that includes two kinases, NEK10 and PKA, and the E3 ubiquitin ligase CHIP. We show that NEK10 is essential for ciliogenesis in mammals and for the development of medaka fish. PKA phosphorylation primes NEK10 for CHIP-mediated ubiquitination and proteolysis resulting in cilia resorption. Disarrangement of this control mechanism occurs in proliferative and genetic disorders. These findings unveil a pericentriolar kinase signalosome that efficiently links the cAMP cascade with the ubiquitin-proteasome system, thereby controlling essential aspects of ciliogenesis.


Asunto(s)
Cilios/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Animales , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Centriolos/metabolismo , Células HEK293 , Humanos , Hipogonadismo/genética , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Quinasas Relacionadas con NIMA/fisiología , Oryzias/embriología , Fosforilación , Proteolisis , Ataxias Espinocerebelosas/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
12.
Front Pharmacol ; 6: 214, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26441667

RESUMEN

[This corrects the article on p. 170 in vol. 6, PMID: 26347651.].

13.
Front Pharmacol ; 6: 170, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26347651

RESUMEN

The second messenger molecule cAMP links extracellular signals to intracellular responses. The main cellular cAMP effector is the compartmentalized protein kinase A (PKA). Upon receptor initiated cAMP-mobilization, PKA regulatory subunits (R) bind cAMP thereby triggering dissociation and activation of bound PKA catalytic subunits (PKAc). Mutations in PKAc or RIa subunits manipulate PKA dynamics and activities which contribute to specific disease patterns. Mutations activating cAMP/PKA signaling contribute to carcinogenesis or hormone excess, while inactivating mutations cause hormone deficiency or resistance. Here we extended the application spectrum of a Protein-fragment Complementation Assay based on the Renilla Luciferase to determine binary protein:protein interactions (PPIs) of the PKA network. We compared time- and dose-dependent influences of cAMP-elevation on mutually exclusive PPIs of PKAc with the phosphotransferase inhibiting RIIb and RIa subunits and the protein kinase inhibitor peptide (PKI). We analyzed PKA dynamics following integration of patient mutations into PKAc and RIa. We observed that oncogenic modifications of PKAc(L206R) and RIa(Δ184-236) as well as rare disease mutations in RIa(R368X) affect complex formation of PKA and its responsiveness to cAMP elevation. With the cell-based PKA PPI reporter platform we precisely quantified the mechanistic details how inhibitory PKA interactions and defined patient mutations contribute to PKA functions.

14.
PLoS Negl Trop Dis ; 9(8): e0004031, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26317760

RESUMEN

The causative agent of cholera, Vibrio cholerae, regulates its diverse virulence factors to thrive in the human small intestine and environmental reservoirs. Among this pathogen's arsenal of virulence factors is the tightly regulated type VI secretion system (T6SS). This system acts as an inverted bacteriophage to inject toxins into competing bacteria and eukaryotic phagocytes. V. cholerae strains responsible for the current 7th pandemic activate their T6SS within the host. We established that T6SS-mediated competition occurs upon T6SS activation in the infant mouse, and that this system is functional under anaerobic conditions. When investigating the intestinal host factors mucins (a glycoprotein component of mucus) and bile for potential regulatory roles in controlling the T6SS, we discovered that once mucins activate the T6SS, bile acids can further modulate T6SS activity. Microbiota modify bile acids to inhibit T6SS-mediated killing of commensal bacteria. This interplay is a novel interaction between commensal bacteria, host factors, and the V. cholerae T6SS, showing an active host role in infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ácidos y Sales Biliares/metabolismo , Cólera/metabolismo , Interacciones Huésped-Patógeno , Mucinas/metabolismo , Sistemas de Secreción Tipo VI/metabolismo , Vibrio cholerae/metabolismo , Animales , Proteínas Bacterianas/genética , Cólera/epidemiología , Cólera/microbiología , Femenino , Regulación Bacteriana de la Expresión Génica , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Masculino , Ratones , Pandemias , Sistemas de Secreción Tipo VI/genética , Vibrio cholerae/genética
15.
Sci Rep ; 5: 11133, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26099953

RESUMEN

Membrane receptor-sensed input signals affect and modulate intracellular protein-protein interactions (PPIs). Consequent changes occur to the compositions of protein complexes, protein localization and intermolecular binding affinities. Alterations of compartmentalized PPIs emanating from certain deregulated kinases are implicated in the manifestation of diseases such as cancer. Here we describe the application of a genetically encoded Protein-fragment Complementation Assay (PCA) based on the Renilla Luciferase (Rluc) enzyme to compare binary PPIs of the spatially and temporally controlled protein kinase A (PKA) network in diverse eukaryotic model systems. The simplicity and sensitivity of this cell-based reporter allows for real-time recordings of mutually exclusive PPIs of PKA upon activation of selected endogenous G protein-coupled receptors (GPCRs) in cancer cells, xenografts of mice, budding yeast, and zebrafish embryos. This extends the application spectrum of Rluc PCA for the quantification of PPI-based receptor-effector relationships in physiological and pathological model systems.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mapeo de Interacción de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Animales , Técnicas Biosensibles , Línea Celular Tumoral , Embrión no Mamífero/metabolismo , Genes Reporteros , Células HEK293 , Humanos , Ratones , Osteosarcoma/metabolismo , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra/embriología , Pez Cebra/metabolismo
16.
Nat Commun ; 5: 3549, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24686479

RESUMEN

Vibrio cholerae is a Gram-negative bacterial pathogen that consists of over 200 serogroups with differing pathogenic potential. Only strains that express the virulence factors cholera toxin (CT) and toxin-coregulated pilus (TCP) are capable of pandemic spread of cholera diarrhoea. Regardless, all V. cholerae strains sequenced to date harbour genes for the type VI secretion system (T6SS) that translocates effectors into neighbouring eukaryotic and prokaryotic cells. Here we report that the effectors encoded within these conserved gene clusters differ widely among V. cholerae strains, and that immunity proteins encoded immediately downstream from the effector genes protect their host from neighbouring bacteria producing corresponding effectors. As a consequence, strains with matching effector-immunity gene sets can coexist, while strains with different sets compete against each other. Thus, the V. cholerae T6SS contributes to the competitive behaviour of this species.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Cólera/microbiología , Vibrio cholerae/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Filogenia , Vibrio cholerae/clasificación , Vibrio cholerae/genética , Vibrio cholerae/aislamiento & purificación , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
17.
J Med Microbiol ; 62(Pt 5): 663-676, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23429693

RESUMEN

The type VI secretion system (T6SS) is a mechanism evolved by Gram-negative bacteria to negotiate interactions with eukaryotic and prokaryotic competitors. T6SSs are encoded by a diverse array of bacteria and include plant, animal, human and fish pathogens, as well as environmental isolates. As such, the regulatory mechanisms governing T6SS gene expression vary widely from species to species, and even from strain to strain within a given species. This review concentrates on the four bacterial genera that the majority of recent T6SS regulatory studies have been focused on: Vibrio, Pseudomonas, Burkholderia and Edwardsiella.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/fisiología , Evolución Biológica , Regulación Bacteriana de la Expresión Génica/fisiología , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo , Animales , Proteínas Bacterianas/genética , Bacterias Gramnegativas/patogenicidad , Humanos , Proteínas de Transporte de Membrana/metabolismo , Virulencia
18.
Small GTPases ; 4(4): 247-51, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24322054

RESUMEN

Cellular membrane receptors sense environmental changes and relay the reshaped signal through spatially and temporally organized protein-protein interactions (PPI). Many of such PPI are transient and occur in a certain cell-dependent context. Molecular switches such as kinases and GTPases are engaged in versatile PPI. Recently, we have identified dynamic interaction and reciprocal regulation of cAMP-dependent protein kinase A (PKA) and Rho-GTPase Rac signaling. We demonstrated that GTP-activated Rac acts as a dual kinase-tuning scaffold for p21-activated kinase (PAK) and PKA activities. We showed that receptor-triggered PKA trans-phosphorylation of GTP-Rac-organized PAK contributes to elevations of nuclear Erk1/2 signaling and proliferation. We discuss these recent observations and we provide additional insights how the cAMP-PKA axis might also participate in the regulation of Rac localization.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Complejos Multienzimáticos/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Femenino , Humanos
19.
Nat Commun ; 4: 1822, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23652010

RESUMEN

Human glioblastoma is the most frequent and aggressive form of brain tumour in the adult population. Proteolytic turnover of tumour suppressors by the ubiquitin-proteasome system is a mechanism that tumour cells can adopt to sustain their growth and invasiveness. However, the identity of ubiquitin-proteasome targets and regulators in glioblastoma are still unknown. Here we report that the RING ligase praja2 ubiquitylates and degrades Mob, a core component of NDR/LATS kinase and a positive regulator of the tumour-suppressor Hippo cascade. Degradation of Mob through the ubiquitin-proteasome system attenuates the Hippo cascade and sustains glioblastoma growth in vivo. Accordingly, accumulation of praja2 during the transition from low- to high-grade glioma is associated with significant downregulation of the Hippo pathway. These findings identify praja2 as a novel upstream regulator of the Hippo cascade, linking the ubiquitin proteasome system to deregulated glioblastoma growth.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Secuencia de Aminoácidos , Animales , Neoplasias Encefálicas/enzimología , Línea Celular Tumoral , Proliferación Celular , Glioblastoma/enzimología , Células HEK293 , Vía de Señalización Hippo , Humanos , Masculino , Ratones , Ratones Desnudos , Modelos Biológicos , Datos de Secuencia Molecular , Unión Proteica , Ubiquitinación
20.
PLoS One ; 7(6): e39908, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22768164

RESUMEN

BACKGROUND: Several pathogenic bacteria utilize receptors of the CEACAM family to attach to human cells. Binding to different members of this receptor family can result in uptake of the bacteria. Uptake of Neisseria gonorrhoeae, a gram-negative human pathogen, via CEACAMs found on epithelial cells, such as CEACAM1, CEA or CEACAM6, differs mechanistically from phagocytosis mediated by CEACAM3, a CEACAM family member expressed selectively by human granulocytes. PRINCIPAL FINDINGS: We find that CEACAM1- as well as CEACAM3-mediated bacterial internalization are accompanied by a rapid increase in phosphatidylinositol-3,4,5 phosphate (PI(3,4,5)P) at the site of bacterial entry. However, pharmacological inhibition of phosphatidylinositol-3' kinase (PI3K) selectively affects CEACAM1-mediated uptake of Neisseria gonorrhoeae. Accordingly, overexpression of the PI(3,4,5)P phosphatase SHIP diminishes and expression of a constitutive active PI3K increases CEACAM1-mediated internalization of gonococci, without influencing uptake by CEACAM3. Furthermore, bacterial uptake by GPI-linked members of the CEACAM family (CEA and CEACAM6) and CEACAM1-mediated internalization of N. meningitidis by endothelial cells require PI3K activity. Sensitivity of CEACAM1-mediated uptake toward PI3K inhibition is independent of receptor localization in cholesterol-rich membrane microdomains and does not require the cytoplasmic or the transmembrane domain of CEACAM1. However, PI3K inhibitor sensitivity requires the Ig(C2)-like domains of CEACAM1, which are also present in CEA and CEACAM6, but which are absent from CEACAM3. Accordingly, overexpression of CEACAM1 Ig(C2) domains blocks CEACAM1-mediated internalization. CONCLUSIONS: Our results provide novel mechanistic insight into CEACAM1-mediated endocytosis and suggest that epithelial CEACAMs associate in cis with other membrane receptor(s) via their extracellular domains to trigger bacterial uptake in a PI3K-dependent manner.


Asunto(s)
Antígenos CD/química , Antígenos CD/metabolismo , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Espacio Extracelular/metabolismo , Regiones Constantes de Inmunoglobulina/química , Neisseria gonorrhoeae/metabolismo , Neisseria meningitidis/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Adhesión Bacteriana , Línea Celular , Endocitosis , Células Endoteliales/microbiología , Células Endoteliales/patología , Interacciones Huésped-Patógeno , Humanos , Inositol Polifosfato 5-Fosfatasas , Microdominios de Membrana/metabolismo , Proteínas Mutantes/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Monoéster Fosfórico Hidrolasas/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA