RESUMEN
Histone deacetylase 6 (HDAC6) induces the expression of pro-inflammatory cytokines in macrophages; therefore, HDAC inhibitors may be beneficial for the treatment of macrophage-associated immune disorders and chronic inflammatory diseases, including atherosclerosis and rheumatoid arthritis. Structure-activity relationship studies were conducted on various phenyl hydroxamate HDAC6 inhibitors with indolone/indazolone-based bi- or tricyclic ring moieties as the cap group aiming to develop novel anti-arthritic drug candidates. Several compounds exhibited nanomolar activity and HDAC6 selectivity greater than 500-fold over HDAC1. Compound 21, a derivative with the tetrahydroindazolone cap group, is a potent HDAC6 inhibitor with an IC50 of 18 nM and 217-fold selectivity over HDAC1 and showed favorable oral bioavailability in animals. Compound 21 increases the acetylation level of tubulin without affecting histone acetylation in cutaneous T-cell lymphoma cells and inhibits TNF-α secretion in LPS-stimulated macrophage cells. The anti-arthritic effects of compound 21 were evaluated using a rat adjuvant-induced arthritis (AIA) model. Treatment with compound 21 significantly reduced the arthritis score, and combination treatment with methotrexate showed a synergistic effect in AIA models. We identified a novel HDAC6 inhibitor, compound 21, with excellent in vivo anti-arthritic efficacy, which can lead to the development of oral anti-arthritic drugs.
Asunto(s)
Artritis Reumatoide , Sulfonamidas , Tiofenos , Ratas , Animales , Histona Desacetilasa 6 , Imidazoles , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Artritis Reumatoide/tratamiento farmacológicoRESUMEN
PURPOSE: The objective was to confirm the anti-obesity activity of a silk peptide (SP) and a silkworm pupa peptide (SPP) in rats fed a high-fat diet (HFD) and to elucidate their action mechanism(s) in a preadipocyte culture system. METHODS: In an in vitro mechanistic study, the differentiation and maturation of 3T3-L1 preadipocytes were stimulated with insulin (5 µg/mL), and effects of SP and SPP on the adipogenesis of mature adipocytes were assessed. In an in vivo anti-obesity study, male C57BL/6 mice were fed an HFD containing SP or SPP (0.3, 1.0, or 3.0%) for 8 weeks, and blood and tissue parameters of obesity were analyzed. RESULTS: Hormonal stimulation of preadipocytes led to a 50-70% increase in adipogenesis. Polymerase chain reaction and Western blot analyses revealed increases in adipogenesis-specific genes (leptin and Acrp30) and proteins (peroxisome proliferator-activated receptor-γ and Acrp30). The hormone-induced adipogenesis and activated gene expression was substantially inhibited by treatment with SP and SPP (1-50 µg/mL). The HFD markedly increased body weight gain by increasing the weight of epididymal and mesenteric fat. Body and fat weights were significantly reduced by SP and SPP, in which decreases in the area of abdominal adipose tissue and the size of epididymal adipocytes were confirmed by magnetic resonance imaging and microscopic examination, respectively. Long-term HFD caused hepatic lipid accumulation and increased blood triglycerides and cholesterol, in addition to their regulatory factors Acrp30 and leptin. However, SP and SPP recovered the concentrations of Acrp30 and leptin, and attenuated steatosis. CONCLUSIONS: SP and SPP inhibit the differentiation of preadipocytes and adipogenesis by modulating signal transduction pathways and improve HFD-induced obesity by reducing lipid accumulation and the size of adipocytes.
Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Bombyx/química , Proteínas de Insectos/farmacología , Péptidos/farmacología , Seda/química , Células 3T3-L1 , Adipocitos/metabolismo , Adipogénesis/genética , Adiponectina/genética , Adiponectina/metabolismo , Animales , Fármacos Antiobesidad/farmacología , Peso Corporal/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Dieta Alta en Grasa , Insulina/sangre , Leptina/genética , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/prevención & control , PPAR gamma/genética , PPAR gamma/metabolismo , Pupa/químicaRESUMEN
BACKGROUND: Since cyclophosphamide is metabolically activated to teratogenic acrolein and cytotoxic phosphoramide mustard by cytochrome P-450 type 2B (CYP2B), we assessed the effects of licorice, a CYP2B inducer, on the fetal defects induced by cyclophosphamide. METHODS: Pregnant Sprague-Dawley rats were daily administered with licorice (100 mg/kg) by gavage for 7 days, from the 6th to 12th day of gestation, and intraperitoneally administered with cyclophosphamide (11 mg/kg) 1 hr after the final licorice treatment. On the 20th day of gestation, maternal and fetal abnormalities were determined by Cesarian section. RESULTS: Cyclophosphamide was found to reduce fetal and placental weights without increasing resorption or death. In addition, it induced malformations in live fetuses; 93.8, 41.1, and 100% of the external (skull and limb defects), visceral (cleft palate and ureteric dilatation), and skeletal (acrania, vertebral/costal malformations, and delayed ossification) abnormalities, respectively. When pre-treated with licorice, cyclophosphamide-induced body weight loss and abnormalities of fetuses were remarkably aggravated. Moreover, repeated treatment with licorice greatly increased mRNA expression and activity of hepatic CYP2B. CONCLUSIONS: The results indicate that repeated intake of licorice may aggravate cyclophosphamide-induced body weight loss and malformations of fetuses by upregulating CYP2B.
Asunto(s)
Antineoplásicos Alquilantes/toxicidad , Ciclofosfamida/toxicidad , Citocromo P-450 CYP2B1/genética , Glycyrrhiza/química , Extractos Vegetales/toxicidad , ARN Mensajero/efectos de los fármacos , Teratógenos/toxicidad , Anomalías Inducidas por Medicamentos , Animales , Peso Corporal/efectos de los fármacos , Citocromo P-450 CYP2B1/metabolismo , Femenino , Desarrollo Fetal/efectos de los fármacos , Reacción en Cadena de la Polimerasa , Embarazo , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Regulación hacia ArribaRESUMEN
BACKGROUND: Although tofacitinib has shown highly significant efficacy for rheumatoid arthritis (RA), there are still a considerable number of patients that are non-responders owing to its limited effectiveness and various adverse effects. Thus, alternative options with better efficacy and lower toxicity are desired. Here, M-134, a recently developed HDAC6 inhibitor, was examined for its therapeutic potential when combined with tofacitinib in a rat model of RA. METHODS: The single or combined administration of M-134 and tofacitinib was examined in complete Freund's adjuvant-induced arthritis (AIA) or collagen-induced arthritis (CIA) rodent models. To evaluate the therapeutic and adverse effects, the following factors were observed: macroscopic or microscopic scoring of all four paws; the expression of ICAM-1, VCAM-1, and IP-10 in the joints and that of various cytokines and chemokines in the plasma; the weight of the thymus and the liver; and changes in hematological enzymes. RESULTS: Combination treatment showed strong synergistic effects as measured by the clinical score and histological changes, without adverse effects such as weight loss in the thymus and increased liver enzymes (ALT and AST). Additionally, it also reduced ICAM-1, VCAM-1, and IP-10 expression in the joints, and M-134 increased the efficacy of tofacitinib by regulating various cytokines, such as interleukin (IL)-1ß, IL-17, and TNF-α, in the serum of AIA rats. Differences in the cytokine expression for each drug were found in the CIA model. CONCLUSIONS: M-134 and tofacitinib combination therapy is a potential option for the treatment of RA through the regulation of cytokines, chemokines, and adhesion molecules.
Asunto(s)
Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Histona Desacetilasa 6/antagonistas & inhibidores , Piperidinas/uso terapéutico , Pirimidinas/uso terapéutico , Antirreumáticos/química , Artritis Experimental , Citocinas/metabolismo , Quimioterapia Combinada , Adyuvante de FreundRESUMEN
Despite advances in therapeutic strategies for multiple sclerosis (MS), the therapy options remain limited with various adverse effects. Here, the therapeutic potential of CKD-506, a novel HDAC6-selective inhibitor, against MS was evaluated in mice with myelin oligodendrocyte glycoprotein35-55 (MOG35-55)-induced experimental autoimmune encephalitis (EAE) under various treatment regimens. CKD-506 exerted prophylactic and therapeutic effects by regulating peripheral immune responses and maintaining blood-brain barrier (BBB) integrity. In MOG35-55-re-stimulated splenocytes, CKD-506 decreased proliferation and downregulated the expression of IFN-γ and IL-17A. CKD-506 downregulated the levels of pro-inflammatory cytokines in the blood of EAE mice. Additionally, CKD-506 decreased the leakage of intravenously administered Evans blue into the spinal cord; CD4+ T cells and CD4-CD11b+CD45+ macrophage/microglia in the spinal cord was also decreased. Moreover, CKD-506 exhibited therapeutic efficacy against MS, even when drug administration was discontinued from day 15 post-EAE induction. Disease exacerbation was not observed when fingolimod was changed to CKD-506 from day 15 post-EAE induction. CKD-506 alleviated depression-like behavior at the pre-symptomatic stage of EAE. In conclusion, CKD-506 exerts therapeutic effects by regulating T cell- and macrophage-mediated peripheral immune responses and strengthening BBB integrity. Our results suggest that CKD-506 is a potential therapeutic agent for MS.
Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/etiología , Animales , Antidepresivos/administración & dosificación , Antidepresivos/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/etiología , Femenino , Clorhidrato de Fingolimod/farmacología , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/administración & dosificación , Macrófagos/efectos de los fármacos , Macrófagos/patología , Ratones Endogámicos C57BL , Glicoproteína Mielina-Oligodendrócito/toxicidad , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiopatología , Linfocitos T/efectos de los fármacos , Linfocitos T/patologíaRESUMEN
BACKGROUND: To investigate the effects of inhibiting histone deacetylase (HDAC) 6 on inflammatory responses and tissue-destructive functions of fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA). METHODS: FLS from RA patients were activated with interleukin (IL)-1ß in the presence of increasing concentrations of M808, a novel specific HDAC6 inhibitor. Production of ILs, chemokines, and metalloproteinases (MMPs) was measured in ELISAs. Acetylation of tubulin and expression of ICAM-1 and VCAM-1 were assessed by Western blotting. Wound healing and adhesion assays were performed. Cytoskeletal organization was visualized by immunofluorescence. Finally, the impact of HDAC6 inhibition on the severity of arthritis and joint histology was examined in a murine model of adjuvant-induced arthritis (AIA). RESULTS: HDAC6 was selectively inhibited by M808. The HDAC6 inhibitor suppressed the production of MMP-1, MMP-3, IL-6, CCL2, CXCL8, and CXCL10 by RA-FLS in response to IL-1ß. Increased acetylation of tubulin was associated with decreased migration of RA-FLS. Inhibiting HDAC6 induced cytoskeletal reorganization in RA-FLS by suppressing the formation of invadopodia following activation with IL-1ß. In addition, M808 tended to decrease the expression of ICAM-1 and VCAM-1. In the AIA arthritis model, M808 improved the clinical arthritis score in a dose-dependent manner. Also, HDAC6 inhibition was associated with less severe synovial inflammation and joint destruction. CONCLUSION: Inhibiting HDAC6 dampens the inflammatory and destructive activity of RA-FLS and reduces the severity of arthritis. Thus, targeting HDAC6 has therapeutic potential.
Asunto(s)
Artritis Reumatoide , Histona Desacetilasa 6/antagonistas & inhibidores , Sinoviocitos , Animales , Artritis Reumatoide/tratamiento farmacológico , Células Cultivadas , Fibroblastos , Humanos , Ratones , Membrana SinovialRESUMEN
OBJECTIVES: Histone deacetylase (HDAC) 6 promotes inflammation. We investigated the anti-arthritic effects of CKD-506, a novel HDAC6 inhibitor, in vitro and in a murine model of arthritis as a novel treatment option for rheumatoid arthritis (RA). METHODS: HDAC6 was overexpressed in mouse peritoneal macrophages and RAW 264.7 cells, and the effects of a HDAC6 inhibitor CKD-506 on cytokine production and activity of NF-κB and AP-1 signaling were examined. Peripheral blood mononuclear cells (PBMCs) from RA patients and fibroblast-like synoviocytes (FLS) were activated in the presence of CKD-506. Next, regulatory T cells (Tregs) were induced from RA patients and co-cultured with healthy effector T cells (Teffs) and cell proliferation was analyzed by flow cytometry. Finally, the effects of the inhibitor on the severity of arthritis were assessed in a murine model of adjuvant-induced arthritis (AIA). RESULTS: Overexpression of HDAC6 induced macrophages to produce TNF-α and IL-6. The inhibitory effect of CKD-506 was mediated via blockade of NF-κB and AP-1 activation. HDAC6 inhibition reduced TNF-α and IL-6 production by activated RA PBMCs. CKD-506 inhibited production of MMP-1, MMP-3, IL-6, and IL-8 by activated FLS. In addition, CKD-506 inhibited proliferation of Teffs directly and indirectly by improving iTreg function. In AIA rats, oral CKD-506 improved clinical arthritis in a dose-dependent manner. A combination of sub-therapeutic CKD-506 and methotrexate exerted a synergistic effect. CONCLUSION: The novel HDAC6 inhibitor CKD-506 suppresses inflammatory responses by monocytes/macrophages, improves Treg function, and ameliorates arthritis severity in a murine model of RA. Thus, CKD-506 might be a novel and effective treatment option for RA.
Asunto(s)
Artritis Experimental , Artritis Reumatoide , Insuficiencia Renal Crónica , Sinoviocitos , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos , Histona Desacetilasa 6 , Humanos , Leucocitos Mononucleares , Ratones , Ratas , Insuficiencia Renal Crónica/tratamiento farmacológico , Membrana SinovialRESUMEN
BACKGROUND: Histone deacetylase (HDAC) inhibitor has recently been reported to have a therapeutic effect as an anti-inflammatory agent in collagen-induced arthritis (CIA). We investigated the therapeutic effect of a new selective HDAC6 inhibitor, CKD-L, compared to ITF 2357 or Tubastatin A on CIA and regulatory T (Treg) cells in patients with rheumatoid arthritis (RA). METHODS: CIA was induced by bovine type II collagen (CII) in DBA/1 J mice. Mice were treated with HDAC inhibitor for 18 days. Arthritis score was assessed and histological analysis was performed by hematoxylin and eosin (H&E) stain. Cytotoxic T-lymphocyte associated protein (CTLA)-4 expression in induced Treg cells was analyzed and suppression assay was analyzed using Treg cells and effector T (Teff) cells isolated from naive C57BL/6 mice by flow cytometry. Cytokines were analyzed in peripheral blood mononuclear cells (PBMC) of five patients with RA by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (PCR). Tumor necrosis factor (TNF) was analyzed using PMA- activated THP-1 cells by ELISA. Suppression assay was analyzed using Treg cells and Teff cells isolated from RA patients by flow cytometry. RESULTS: In the CIA model, CKD-L and Tubastatin A significantly decreased the arthritis score. CKD-L increased CTLA-4 expression in Foxp3+ T cells and inhibited the proliferation of Teff cells in the suppression assay. In RA PBMC, CKD-L significantly inhibited TNF and interleukin (IL)-1ß, and increased IL-10. CKD-L and Tubastatin A inhibited TNF secretion from PMA-activated THP-1 cells. CKD-L and ITF 2357 inhibited the proliferation of Teff cells in RA patients in the suppression assay. Tubastatin A had no effect on inhibition of proliferation. CONCLUSION: CKD-L decreased the arthritis score in CIA, reduced the expression of TNF and IL-1ß, and increased the expression of IL-10 in PBMC from RA patients. CKD-L increased CTLA-4 expression and the suppressive function of Treg cells. These results suggest that CKD-L may have a beneficial effect in the treatment of RA.
Asunto(s)
Artritis Experimental/tratamiento farmacológico , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/uso terapéutico , Linfocitos T Reguladores/efectos de los fármacos , Animales , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Resultado del TratamientoRESUMEN
Since multiple sclerosis (MS) is featured with widespread demyelination caused by autoimmune response, we investigated the recovery effects of F3.olig2 progenitors, established by transducing human neural stem cells (F3 NSCs) with Olig2 transcription factor, in myelin oligodendrocyte glycoprotein- (MOG-) induced experimental autoimmune encephalomyelitis (EAE) model mice. Six days after EAE induction, F3 or F3.olig2 cells (1 × 10(6)/mouse) were intravenously transplanted. MOG-injected mice displayed severe neurobehavioral deficits which were remarkably attenuated and restored by cell transplantation, in which F3.olig2 cells were superior to its parental F3 cells. Transplanted cells migrated to the injured spinal cord, matured to oligodendrocytes, and produced myelin basic proteins (MBP). The F3.olig2 cells expressed growth and neurotrophic factors including brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF), and leukemia inhibitory factor (LIF). In addition, the transplanted cells markedly attenuated inflammatory cell infiltration, reduced cytokine levels in the spinal cord and lymph nodes, and protected host myelins. The results indicate that F3.olig2 cells restore neurobehavioral symptoms of EAE mice by regulating autoimmune inflammatory responses as well as by stimulating remyelination and that F3.olig2 progenitors could be a candidate for the cell therapy of demyelinating diseases including MS.
RESUMEN
The neuroprotective effects of a butanol fraction of white rose petal extract (WRPE-BF) were investigated in a middle cerebral artery occlusion (MCAO) model. Seven week-old male rats were orally administered WRPE-BF for 2 weeks and subjected to MCAO for 2 h, followed by reperfusion. Twenty-four h later, MCAO-induced behavioral dysfunctions were markedly improved in a dose-dependent manner by pretreatment with WRPE-BF. Moreover, higher dose of WRPE-BF not only decreased infarction area but also effectively reduced astrogliosis. The expression of inducible nitric oxide synthase, cyclooxygenase-2, and glial fibrillary acidic protein in MCAO model were markedly inhibited by WRPE-BF treatment. Notably, WRPE-BF decreased nitric oxide and malondialdehyde levels in the striatum and subventricular zone of stroke-challenged brains. These data suggested that WRPE-BF may exert its neuroprotective effects via anti-oxidative and anti-inflammatory activities against ischemia-reperfusion brain injury and could be a good candidate as a therapeutic target for ischemic stroke.
RESUMEN
A human neural stem cell (NSC) line over-expressing human choline acetyltransferase (ChAT) gene was generated and these F3.ChAT NSCs were transplanted into the brain of rat Alzheimer disease (AD) model which was induced by application of ethylcholine mustard aziridinium ion (AF64A) that specifically denatures cholinergic nerves and thereby leads to memory deficit as a salient feature of AD. Transplantation of F3.ChAT human NSCs fully recovered the learning and memory function of AF64A animals, and induced elevated levels of acetylcholine (ACh) in cerebrospinal fluid (CSF). Transplanted F3.ChAT human NSCs were found to migrate to various brain regions including cerebral cortex, hippocampus, striatum and septum, and differentiated into neurons and astrocytes. The present study demonstrates that brain transplantation of human NSCs over-expressing ChAT ameliorates complex learning and memory deficits in AF64A-cholinotoxin-induced AD rat model.
Asunto(s)
Enfermedad de Alzheimer/terapia , Encéfalo/metabolismo , Colina O-Acetiltransferasa/metabolismo , Trastornos del Conocimiento/terapia , Células-Madre Neurales/trasplante , Acetilcolina/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Astrocitos/metabolismo , Reacción de Prevención/fisiología , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Cognición , Trastornos del Conocimiento/metabolismo , Modelos Animales de Enfermedad , Humanos , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , RatasRESUMEN
The study investigated the correlation between infarction areas and behavioural deficits in middle cerebral artery occlusion (MCAO) and photothrombosis stroke models. In the MCAO model, a 0.38 mm-diameter silicone-coated thread was introduced through the left external carotid artery and advanced 18 mm via the internal carotid artery to the origin of middle cerebral artery of male Sprague-Dawley rats weighing 300-350 g. The thread was removed for reperfusion after occlusion for 0.5, 1 or 2h. In the photothrombosis model, after a midline incision on the scalp, a focused light (10,000 lux, 6 mm-diameter) was delivered 1mm anterior to the bregma and 3mm left of the midline for 5, 10 or 20 min. During the first 2 min of irradiation, Rose Bengal dye (30 mg/kg) was injected intravenously. Twenty four hours post-surgery, the animals were subjected to neurological scoring and behavioural performances, and were sacrificed for macroscopic and microscopic examinations of brain injury. Total infarction volumes in the MCAO model rats increased in an occlusion time-dependent manner, while the infarction volumes in photothrombosis model rats plateaued relatively quickly with no time-dependent increase. The MCAO model displayed neurological scores and behavioural deficits that correlated well with infarction volumes, while relatively poor correlation between infarction volume and neurobehavioural abnormalities was evident in the photothrombosis model. The results indicate the suitability of the MCAO model for studies on preventive or therapeutic compounds related to functional recovery, although the photothrombosis model might be useful to generate focused lesions leading to the location-related behavioural changes.
Asunto(s)
Conducta Animal/fisiología , Infarto Cerebral/patología , Infarto Cerebral/fisiopatología , Modelos Animales de Enfermedad , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Animales , Infarto de la Arteria Cerebral Media/patología , Isquemia/patología , Isquemia/fisiopatología , Masculino , Pruebas Neuropsicológicas , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/patología , Daño por Reperfusión/fisiopatología , Trombosis/etiología , Trombosis/patologíaRESUMEN
Renal toxicity by melamine in combination with cyanuric acid (1:1) was investigated. Male rats were orally administered melamine plus cyanuric acid (5, 50 or 400 mg/kg each) for 3 days. In contrast to a negligible effect by melamine alone (50 mg/kg, a no-observed-adverse-effect-level: NOAEL), co-administration with cyanuric acid markedly increased the concentrations of blood urea nitrogen and creatinine, as well as kidney weight. A high dose (400 mg/kg) of melamine plus cyanuric acid induced more severe kidney toxicity. The increased blood parameters for kidney toxicity and organ weight lasted longer than 4 days. Combined treatment with melamine and cyanuric acid (50-400 mg/kg each) resulted in many gold-brown crystals and toxic lesions in renal tubules, which were not observed in animals treated with melamine alone (50 mg/kg). These results indicate that only a 3-day exposure to melamine in combination with cyanuric acid causes severe renal damage, even at a NOAEL for melamine found in a 13-week toxicity study. Therefore, it is suggested that the tolerable daily intake or regulatory/management levels of melamine need to be re-considered for cases of co-exposure with cyanuric acid.
RESUMEN
Antiulcer effects of pantoprazole, a proton-pump inhibitor, on water-immersion restraint stress (WIRS)-, alcohol (ethanol)- and pylorus ligation-induced gastric ulcers were investigated in male rats. Rats were orally administered with pantoprazole 30 min prior to exposure to various types of ulcer inducers. In stress-induced ulcer model, rats were subjected to WIRS at 22â for 4 hours, and the degree of ulcer (in mm) was evaluated. In alcohol-induced ulcer model, rats were orally administered with pure (100%) ethanol (1 mL/kg), and the ulcer lesions were measured 1 hour after ethanol challenge. In pylorus ligation-induced ulcer model, rats were subjected to pylorus ligation, and the degree of erosions and ulcers was scored 17 hours after the operation. Pantoprazole attenuated the ulcer lesions induced by WIRS in a dose-dependent manner, exhibiting a median effective dose (ED(50)) value of 0.78 mg/kg. By comparison, pantoprazole was effective at relatively-high doses for the improvement of ethanol-induced ulcers, showing an ED(50) value of 20.5 mg/kg. Notably, pantoprazole was practically ineffective (ED(50)>50.0) in pylorus ligation model. Taken together, it was confirmed that pantoprazole showed inhibitory activity on gastric ulcers induced by stress and alcohol, but was ineffective on pylorus ligation-induced ulcer. Therefore, the results indicate that proton-pump inhibitors including pantoprazole might reveal highly-different effects according to the type of ulcer inducers, and that the prescription of antiulcer agents should be carefully selected.
RESUMEN
Periventricular leukomalacia, specifically characterized as white matter injury, in neonates is strongly associated with the damage of pre-myelinating oligodendrocytes. Clinical data suggest that hypoxia-ischemia during delivery and intrauterine or neonatal infection-inflammation are important factors in the etiology of periventricular leukomalacia including cerebral palsy, a serious case exhibiting neurobehavioral deficits of periventricular leukomalacia. In order to explore the pathophysiological mechanisms of white matter injury and to better understand how infectious agents may affect the vulnerability of the immature brain to injury, novel animal models have been developed using hypoperfusion, microbes or bacterial products (lipopolysaccharide) and excitotoxins. Such efforts have developed rat models that produce predominantly white matter lesions by adopting combined hypoxia-ischemia technique on postnatal days 1-7, in which unilateral or bilateral carotid arteries of animals are occluded (ischemia) followed by 1-2 hour exposure to 6-8% oxygen environment (hypoxia). Furthermore, low doses of lipopolysaccharide that by themselves have no adverse-effects in 7-day-old rats, dramatically increase brain injury to hypoxic-ischemic challenge, implying that inflammation sensitizes the immature central nervous system. Therefore, among numerous models of periventricular leukomalacia, combination of hypoxia-ischemia-lipopolysaccharide might be one of the most-acceptable rodent models to induce extensive white matter injury and ensuing neurobehavioral deficits for the evaluation of candidate therapeutics.
RESUMEN
Antitumor effects of a ginsenoside Rg(3)-fortified red ginseng preparation (Rg(3)-RGP) were investigated in human non-small cell lung carcinoma (H460) cells using in vitro cytotoxicity assay and in vivo nude mouse xenograft model. Immunomodulatory effects of the preparation were also assessed by measuring the facilitating activities on the nitric oxide (NO) release from peritoneal macrophages, in vitro and in vivo lymphocyte proliferation, and the carbon clearance from circulating blood. In a cell level, Rg(3)-RGP exerted H460 cytotoxicity and facilitated splenocyte proliferation at very high concentrations, without affecting NO production. However, oral administration of Rg(3)-RGP (100-300 mg/kg) enhanced carbon particle-phagocytic index of blood macrophages up to 360-397% of control value. In addition, Rg(3)-RGP significantly increased the splenocyte proliferation (23% at 100mg/kg). In tumor-bearing mice, 28-day oral treatment with Rg(3)-RGP (100mg/kg) remarkably suppressed the tumor growth, leading to the decrease of the tumor volume and weight by 30-31%, which was comparable to the effect (27-29% reduction) of doxorubicin (2mg/kg at 3-day intervals). While Rg(3)-RGP did not cause adverse effects, intravenous injection of doxorubicin markedly decreased body and testes weights, and exhibited severe depletion of spermatogenic cells in the atrophic seminiferous tubules. These results indicate that Rg(3)-RGP exerts antitumor activities via indirect immunomodulatory actions, without causing adverse effects as seen in doxorubicin.