Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(13): 9293-9301, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38516847

RESUMEN

Self-assembly-based structural transition has been explored for various applications, including molecular machines, sensors, and drug delivery. In this study, we developed new redox-active metal-organic frameworks (MOFs) called DGIST-10 series that comprise π-acidic 1,4,5,8-naphthalenediimide (NDI)-based ligands and Ni2+ ions, aiming to boost ligand-self-assembly-driven structural transition and study the involved mechanism. Notably, during the synthesis of the MOFs, a single-crystal-amorphous-single-crystal structural transition occurred within the MOFs upon radical formation, which was ascribed to the fact that radicals prefer spin-pairing or through-space electron delocalization by π-orbital overlap. The radical-formation-induced structural transitions were further confirmed by the postsynthetic solvothermal treatment of isolated nonradical MOF crystals. Notably, the transient amorphous phase without morphological disintegration was clearly observed, contributing to the seminal structural change of the MOF. We believe that this unprecedented structural transition triggered by the ligand self-assembly magnifies the structural flexibility and diversity of MOFs, which is one of the pivotal aspects of MOFs.

2.
Inorg Chem ; 57(14): 8299-8306, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29952559

RESUMEN

The electrochemical reduction of trivalent samarium in a LiCl-KCl eutectic melt produced highly stable divalent samarium, whose electrochemical properties and electronic structure in the molten salt were investigated using cyclic voltammetry, UV-vis absorption spectroscopy, laser-induced emission spectroscopy, and density functional theory (DFT) calculations. Diffusion coefficients of Sm2+ and Sm3+ were electrochemically measured to be 0.92 × 10-5 and 1.10 × 10-5 cm2/s, respectively, and the standard apparent potential of the Sm2+/3+ couple was estimated to be -0.82 V vs Ag|Ag+ at 450 °C. The spectroelectrochemical study demonstrated that the redox behavior of the samarium cations obeys the Nernst equation ( E°' = -0.83 V, n = 1) and the trivalent samarium cation was successfully converted to the divalent cation having characteristic absorption bands at 380 and 530 nm with molar absorptivity values of 1470 and 810 M-1 cm-1, respectively. Density function theory calculations for the divalent samarium complex revealed that the absorption signals originated from the 4f6 to 4f55d1 transitions. Additionally, laser-induced emission measurements for the Sm cations in the LiCl-KCl matrix showed that the Sm3+ ion in the LiCl-KCl melt at 450 °C emitted an orange color of fluorescence, whereas a red colored emission was observed from the Sm2+ ion in the solidified LCl-KCl salt at room temperature.

3.
Sci Adv ; 8(51): eade1383, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36563156

RESUMEN

Radical-ionic metal-organic frameworks (MOFs) have unique optical, magnetic, and electronic properties. These radical ions, forcibly formed by external stimulus-induced redox processes, are structurally unstable and have short radical lifetimes. Here, we report two naphthalenediimide-based (NDI-based) Ca-MOFs: DGIST-6 and DGIST-7. Neutral DGIST-6, which is generated first during solvothermal synthesis, decomposes and is converted into radical-anionic DGIST-7. Cofacial (NDI)2•- and (NDI)22- dimers are effectively stabilized in DGIST-7 by electron delocalization and spin-pairing as well as dimethylammonium counter cations in their pores. Single-crystal x-ray diffractometry was used to visualize redox-associated structural transformations, such as changes in centroid-to-centroid distance. Moreover, the unusual rapid reduction of oxidized DGIST-7 into the radical anion upon infrared irradiation results in effective and reproducible photothermal conversion. This study successfully illustrated the strategic use of in situ prepared cofacial ligand dimers in MOFs that facilitate the stabilization of radical ions.

4.
Water Res ; 222: 118864, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35870393

RESUMEN

Environmental damage from serious nuclear accidents should be urgently restored, which needs the removal of radioactive species. Radioactive iodine isotopes are particularly problematic for human health because they are released in large amounts and retain radioactivity for a substantial time. Herein, we prepare platinum-coated iron nanoparticles (Fe@Pt) as a highly selective and reusable adsorbent for iodine species, i.e., iodide (I-), iodine (I2), and methyl iodide (CH3I). Fe@Pt selectively separates iodine species from seawater and groundwater with a removal efficiency ≥ 99.8%. The maximum adsorption capacity for the iodine atom of all three iodine species was determined to be 25 mg/g. The magnetic properties of Fe@Pt allow for the facile recovery and reuse of Fe@Pt, which remains stable with high efficiency (97.5%) over 100 uses without structural and functional degradation in liquid media. Practical application to the removal of radioactive 129I and feasibility for scale-up using a 20 L system demonstrate that Fe@Pt can function as a reusable adsorbent for the selective removal of iodine species. This systematic procedure is a standard protocol for designing highly active adsorbents for the clean separation and removal of various chemical species dissolved in wastewater.


Asunto(s)
Yodo , Neoplasias de la Tiroides , Contaminantes Químicos del Agua , Adsorción , Humanos , Yoduros , Radioisótopos de Yodo/química , Agua/química , Contaminantes Químicos del Agua/química
5.
J Mater Chem B ; 6(21): 3456-3465, 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32254442

RESUMEN

The intracellular delivery of functional proteins in their native forms into cells is a theme of paramount importance in research owing to their diverse biological applications. Porous inorganic nanoparticles are emerging as efficient nanocarriers for the delivery of small molecules and drugs. To expand the range of cargos from small molecules to large native functional proteins, cubic mesoporous silica nanoparticles (cMSNs) with a Pm3n pore symmetry with an average particle dimension of 180 nm were prepared. The as-prepared cMSNs were subsequently etched with a methanolic solution of Ca(NO3)2 to expand their mesopores and simultaneously remove the template. The original mesopores with a pore dimension of 2.41 nm partially collapsed and combined into ultra-large mesopores with an average pore diameter of 13.89 nm without perturbing the original cubic symmetry of the remaining mesopores. The maximum pore dimension was around 60 nm. Various techniques including powder X-ray diffraction, transmission electron microscopy, and electron tomography identified the unique three-dimensional structure of pore-enlarged cMSNs (Ca-cMSNs). Moreover, their surfaces were functionalized with a guanidinium-rich cell-penetrating R8-azido-peptide (p-azidophenylalanine-GSGSGGRRRRRRRR) through the click reaction. The intracellular delivery of functional proteins such as Cre recombinase into human TE671(LoxP-LacZ) cells was realized by using R8-Ca-cMSNs as native protein delivery synthetic nanocarriers. The delivery efficiency when using the R8-Ca-cMSNs significantly enhanced compared to that when using Ca-cMSNs without surface-bound cell-penetrating peptides.

6.
J Colloid Interface Sci ; 486: 136-143, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27697651

RESUMEN

Magnetic core-shell ZnFe2O4/ZnS composites were synthesized through a two-step chemical process including the hydrothermal and the co-precipitation methods. The structural characterization revealed that the composites consisted of a layer of ZnS clusters on the surface of ZnFe2O4 nanoparticles. The band gap energy of the composite was estimated to be 2.2eV through the Kubelka-Munk plot, implying the possible application as a photocatalyst under the visible light radiation. The improved photocatalytic efficiency of the ZnFe2O4/ZnS composites was confirmed through the photocatalytic degradation of Methyl Orange. The increased absorption of the visible light and the enhanced separation of the electron-hole pairs due to the relative energy band positions in ZnFe2O4 and ZnS are considered as the main advantages. Additionally, the moderate magnetization of the ZnFe2O4 core insured the easy magnetic collection of the composite materials without affecting the photocatalytic performance. Our results showed that ZnFe2O4-based nanocomposites could be used as an effective and magnetic retrievable photocatalyst.

7.
J Colloid Interface Sci ; 456: 93-9, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26101834

RESUMEN

A very simple preparation was developed for catalytically active Pd-nanoparticles (Pd-NPs) decorating polythiophene conducting polymer nanospheres by the redox reaction between PdCl4(2-) ion and 2-thiophenemethanol (2-TPM) in an aqueous solution at room temperature. 2-TPM polymerized to form polythiophene nanospheres in the presence of PdCl4(2-) ions, reduced to Pd-NPs without the need for extra reducing agents or organic surface capping ligands for sub-20 nm Pd-NPs that uniformly cover polythiophene nanospheres whose dimensions range from 120 nm to 200 nm. The Pd-NP/polythiophene nanospheres were characterized by scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), and inductively-coupled plasma atomic emission spectroscopy (ICP-AES). The Pd-NP/polythiophene nanospheres were found to be an excellent catalyst for Suzuki-Miyaura cross-coupling reaction for a wide range of substrates under mild aerobic reaction conditions.


Asunto(s)
Nanosferas/química , Paladio/química , Polímeros/química , Tiofenos/química , Catálisis , Iones , Ligandos , Nanopartículas del Metal/química , Metanol/química , Microscopía Electrónica de Transmisión de Rastreo , Microscopía Electrónica de Transmisión , Oxidación-Reducción , Espectroscopía de Fotoelectrones , Difracción de Rayos X
8.
J Colloid Interface Sci ; 448: 467-72, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25770822

RESUMEN

In pursuit of superior TiO2 photoanode materials for dye-sensitized solar cells (DSSCs), we prepared lotus-root shaped meso-/macroporous TiO2. The lotus-root shaped meso-/macroporous TiO2 was easily prepared by using a cetyltrimethylammonium hydroxide (CTAOH) template in aqueous solution. The crystallization of the as-prepared amorphous lotus-root shaped TiO2 was performed at 700 °C in air. Crystalline anatase phase with a very small portion of rutile phase was generated after the heat treatment at 700 °C and the BET surface area of crystalline lotus-root shaped meso-/macroporous TiO2 material (LR-700) was 30.0 m(2) g(-1). The wall of LR-700 displayed well-developed mesoporosity with a pore dimension of 28.3 nm. Periodically arranged microscale one-dimensional (1D) macropores were also observed in the particles. The photon-to-current conversion efficiencies (η) of LR-700 photoanodes in Grätzel type DSSCs were examined. The conversion efficiency of DSSC prepared by mixing nanoparticulate Evonik P25 and LR-700 (ratio=85:150 by mass) was 28% greater compared to the reference electrode using P25. Incident photon-to-current efficiencies (IPCE) of the DSSCs were dramatically improved by employing the photoanodes composed of a mixture of P25 and LR-700 but impedance analysis indicated that P25/LR-700 mixed cells have resistances similar to the standard P25 reference cell. Thus, photovoltaic performances could be improved mainly due to the increases of dye uptake and external quantum efficiency by using a mixed photoanode composed of LR-700 and nanocrystalline P25 particles.


Asunto(s)
Colorantes/química , Suministros de Energía Eléctrica , Titanio/química , Cristalización , Electrodos , Porosidad , Energía Solar
9.
Faraday Discuss ; 140: 113-23; discussion 185-207, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19213313

RESUMEN

The interactions of nitrate with Cu(100) and Cu(111) in acidic solution are studied by cyclic voltammetry (CV) and in situ electrochemical scanning tunneling microscopy (EC-STM). CV results show that reduction of nitrate on Cu(111) commences at 0.0 V vs. Ag/AgCl while the corresponding potential is -0.3 V on Cu(100). EC-STM images show that the terrace of both Cu(111) and Cu(100) are atomically flat at potentials more negative than -0.7 V. The Cu(100) surface exhibits flat terraces throughout the entire cathodic potential range. Close to OCP, step edges start to corrode. In contrast to Cu(100), the first layer of Cu(111) is converted to an atomically rough and defected surface-associated with nascent surface oxidation at potentials positive of -0.7 V. This surface oxidation is correlated with nitrate reduction.


Asunto(s)
Ácidos/química , Cobre/química , Electroquímica/métodos , Electrólitos/química , Nitratos/química , Catálisis , Modelos Químicos , Oxidación-Reducción , Propiedades de Superficie
10.
J Am Chem Soc ; 129(33): 10171-80, 2007 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-17655297

RESUMEN

Nitrate adsorption and reduction on Cu(100) in acidic solution is studied by electrochemical methods, in situ electrochemical scanning tunneling microscopy (EC-STM), surface enhanced Raman spectroscopy (SERS), and density functional theory (DFT) calculations. Electrochemical results show that reduction of nitrate starts at -0.3 V vs Ag/AgCl and reaches maximum value at -0.58 V. Over the entire potential region interrogated adlayers composed of nitrate, nitrite, or other intermediates are observed by using in situ STM. From the open-circuit potential (OCP) to -0.22 V vs Ag|AgCl, the nitrate ion is dominant and forms a (2 x 2) adlattice on the Cu(100) surface while nitrate forms a dominantly c(2 x 2) structure from -0.25 to -0.36 V. The interconversion between the nitrate and nitrite adlattices is observed. DFT calculations indicate that both nitrate and nitrite are twofold coordinated to the Cu(100) surface.

11.
Langmuir ; 22(25): 10315-21, 2006 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-17128998

RESUMEN

Electrochemical, differential capacitance, and in situ electrochemical scanning tunneling microscopy (EC-STM) methods are used to examine the interaction of bis(3-sulfopropyl)-disulfide (SPS) and mercaptopropylsulfonic acid (MPS) with Cu(100) surfaces both in the absence and presence of chloride. Both electrochemical and differential capacitance results are weakly perturbed by the addition of either MPS or SPS in the potential region between -0.2 and -0.5 V versus Ag/AgCl relative to the additive-free case. EC-STM images obtained from solutions of MPS alone exhibit a c(2 x 2) adlattice whereas those from SPS alone yield only the (1 x 1) structure. In the presence of Cl-, both adsorbates evince only a c(2 x 2) adlattice on the Cu(100) surface. The desorption potential of these structure is identical to that found with Cl- alone. These results show that neither MPS nor SPS adsorbs strongly on Cu(100) in the presence of Cl-.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA