Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Physiol Genomics ; 55(12): 606-617, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37746712

RESUMEN

Augmented vagal signaling may be therapeutic in hypertension. Most studies to date have used stimulation of the cervical vagal branches. Here, we investigated the effects of chronic intermittent electric stimulation of the ventral subdiaphragmatic vagal nerve branch (sdVNS) on long-term blood pressure, immune markers, and gut microbiota in the spontaneously hypertensive rat (SHR), a rodent model of hypertension characterized by vagal dysfunction, gut dysbiosis, and low-grade inflammation. We evaluated the effects of sdVNS on transcriptional networks in the nucleus of the solitary tract (NTS), a major cardioregulatory brain region with direct gut vagal projections. Male juvenile SHRs were implanted with radiotelemetry transmitters and vagal nerve cuffs for chronic intermittent electric sdVNS, applied three times per day for 7 consecutive weeks followed by 1 wk of no stimulation. Blood pressure was measured once a week using telemetry in the sdVNS group as well as age-matched sham-stimulated SHR controls. At the endpoint, colonic and circulating inflammatory markers, corticosterone, and circulating catecholamines were investigated. Bacterial 16 s sequencing measured gut bacterial abundance and composition. RNA sequencing evaluated the effects of sdVNS on transcriptional networks in the NTS. SHRs that received sdVNS exhibited attenuated development of hypertension compared with sham animals. No changes in peripheral inflammatory markers, corticosterone, or catecholamines and no major differences in gut bacterial diversity and composition were observed following sdVNS, apart from decreased abundance of Defluviitaleaceale bacterium detected in sdVNS SHRs compared with sham animals. RNA sequencing revealed significant sdVNS-dependent modulation of select NTS transcriptional networks, including catecholaminergic and corticosteroid networks.NEW & NOTEWORTHY We show that stimulation of the ventral subdiaphragmatic vagal nerve branch may be a promising potential approach to treating hypertension. The data are especially encouraging given that rodents received only 30 min per day of intermittent stimulation therapy and in view of the potential of long-term blood pressure effects that are not stimulus-locked.


Asunto(s)
Hipertensión , Estimulación del Nervio Vago , Ratas , Animales , Masculino , Ratas Endogámicas SHR , Núcleo Solitario , Redes Reguladoras de Genes , Corticosterona , Hipertensión/genética , Hipertensión/terapia , Catecolaminas
2.
J Neurophysiol ; 128(5): 1117-1132, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36197016

RESUMEN

Opioids suppress breathing through actions in the brainstem, including respiratory-related areas of the dorsolateral pons, which contain multiple phenotypes of respiratory patterned neurons. The discharge identity of dorsolateral pontine neurons that are impacted by opioids is unknown. To address this, single neuronal units were recorded in the dorsolateral pons of arterially perfused in situ rat preparations that were perfused with an apneic concentration of the opioid agonist fentanyl, followed by the opioid antagonist naloxone (NLX). Dorsolateral pontine neurons were categorized based on respiratory-associated discharge patterns, which were differentially affected by fentanyl. Inspiratory neurons and a subset of inspiratory/expiratory phase-spanning neurons were either silenced or had reduced firing frequency during fentanyl-induced apnea, which was reversed upon administration of naloxone. In contrast, the majority of expiratory neurons continued to fire tonically during fentanyl-induced apnea, albeit with reduced firing frequency. In addition, pontine late-inspiratory and postinspiratory neuronal activity were absent from apneustic-like breaths during the transition to fentanyl-induced apnea and the naloxone-mediated transition to recovery. Thus, opioid-induced deficits in respiratory patterning may occur due to reduced activity of pontine inspiratory neurons, whereas apnea occurs with loss of all phasic pontine activity and sustained tonic expiratory neuron activity.NEW & NOTEWORTHY Opioids can suppress breathing via actions throughout the brainstem, including the dorsolateral pons. The respiratory phenotype of dorsolateral pontine neurons inhibited by opioids is unknown. Here, we describe the effect of the highly potent opioid fentanyl on the firing activity of these dorsolateral pontine neurons. Inspiratory neurons were largely silenced by fentanyl, whereas expiratory neurons were not. We provide a framework whereby this differential sensitivity to fentanyl can contribute to respiratory pattern deficits and apnea.


Asunto(s)
Analgésicos Opioides , Apnea , Ratas , Animales , Analgésicos Opioides/farmacología , Fentanilo/farmacología , Puente/fisiología , Neuronas/fisiología , Respiración , Naloxona/farmacología
3.
Exp Physiol ; 106(5): 1181-1195, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33749038

RESUMEN

NEW FINDINGS: Cardio-ventilatory coupling refers to the onset of inspiration occurring at a preferential latency following the last heartbeat (HB) in expiration. According to the cardiac-trigger hypothesis, the pulse pressure initiates an inspiration via baroreceptor activation. However, the central neural substrate mediating this coupling remains undefined. Using a combination of animal data, human data and mathematical modelling, this study tests the hypothesis that the HB, by way of pulsatile baroreflex activation, controls the initiation of inspiration that occurs through a rapid neural activation loop from the carotid baroreceptors to Bötzinger complex expiratory neurons. ABSTRACT: Cardio-ventilatory coupling refers to a heartbeat (HB) occurring at a preferred latency prior to the next breath. We hypothesized that the pressure pulse generated by a HB activates baroreceptors that modulate brainstem expiratory neuronal activity and delay the initiation of inspiration. In supine male subjects, we recorded ventilation, electrocardiogram and blood pressure during 20-min epochs of baseline, slow-deep breathing and recovery. In in situ rodent preparations, we recorded brainstem activity in response to pulses of perfusion pressure. We applied a well-established respiratory network model to interpret these data. In humans, the latency between a HB and onset of inspiration was consistent across different breathing patterns. In in situ preparations, a transient pressure pulse during expiration activated a subpopulation of expiratory neurons normally active during post-inspiration, thus delaying the next inspiration. In the model, baroreceptor input to post-inspiratory neurons accounted for the effect. These studies are consistent with baroreflex activation modulating respiration through a pauci-synaptic circuit from baroreceptors to onset of inspiration.


Asunto(s)
Presorreceptores , Respiración , Animales , Barorreflejo , Presión Sanguínea , Frecuencia Cardíaca , Humanos , Masculino , Presorreceptores/fisiología
4.
Am J Physiol Heart Circ Physiol ; 317(2): H279-H289, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31150271

RESUMEN

Increased sympathetic nervous system activity is a hallmark of hypertension (HTN), and it is implicated in altered immune system responses in its pathophysiology. However, the precise mechanisms of neural-immune interaction in HTN remain elusive. We have previously shown an association between elevated sympathetic drive to the bone marrow (BM) and activated BM immune cells in rodent models of HTN. Moreover, microglial-dependent neuroinflammation is also seen in rodent models of HTN. However, the cause-effect relationship between central and systemic inflammatory responses and the sympathetic drive remains unknown. These observations led us to hypothesize that increase in the femoral BM sympathetic nerve activity (fSNA) initiates a cascade of events leading to increase in blood pressure (BP). Here, we investigated the temporal relationship between the BM sympathetic drive, activation of the central and peripheral immune system, and increase in BP in the events leading to established HTN. The present study demonstrates that central infusion of angiotensin II (ANG II) induces early microglial activation in the paraventricular nucleus of hypothalamus, which preceded increase in the fSNA. In turn, activation of fSNA correlated with the timing of increased production and release of CD4+.IL17+ T cells and other proinflammatory cells into circulation and elevation in BP, whereas infiltration of CD4+ cells to the paraventricular nucleus marked establishment of ANG II HTN. This study identifies cellular and molecular mechanisms involved in neural-immune interactions in early and established stages of rodent ANG II HTN. NEW & NOTEWORTHY Early microglia activation in paraventricular nucleus precedes sympathetic activation of the bone marrow. This leads to increased bone marrow immune cells and their release into circulation and an increase in blood pressure. Infiltration of CD4+ T cells into paraventricular nucleus paraventricular nucleus marks late hypertension.


Asunto(s)
Presión Sanguínea , Médula Ósea/inervación , Hipertensión/fisiopatología , Inflamación/fisiopatología , Neuroinmunomodulación , Núcleo Hipotalámico Paraventricular/fisiopatología , Sistema Nervioso Simpático/fisiopatología , Angiotensina II , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Modelos Animales de Enfermedad , Fémur , Hipertensión/inducido químicamente , Hipertensión/inmunología , Hipertensión/metabolismo , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/metabolismo , Masculino , Microglía/inmunología , Microglía/metabolismo , Núcleo Hipotalámico Paraventricular/inmunología , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas Sprague-Dawley , Sistema Nervioso Simpático/inmunología , Sistema Nervioso Simpático/metabolismo , Factores de Tiempo
5.
J Neurosci ; 37(35): 8349-8362, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28751456

RESUMEN

Brief, intermittent oxygen reductions [acute intermittent hypoxia (AIH)] evokes spinal plasticity. Models of AIH-induced neuroplasticity have focused on motoneurons; however, most midcervical interneurons (C-INs) also respond to hypoxia. We hypothesized that AIH would alter the functional connectivity between C-INs and induce persistent changes in discharge. Bilateral phrenic nerve activity was recorded in anesthetized and ventilated adult male rats and a multielectrode array was used to record C4/5 spinal discharge before [baseline (BL)], during, and 15 min after three 5 min hypoxic episodes (11% O2, H1-H3). Most C-INs (94%) responded to hypoxia by either increasing or decreasing firing rate. Functional connectivity was examined by cross-correlating C-IN discharge. Correlograms with a peak or trough were taken as evidence for excitatory or inhibitory connectivity between C-IN pairs. A subset of C-IN pairs had increased excitatory cross-correlations during hypoxic episodes (34%) compared with BL (19%; p < 0.0001). Another subset had a similar response following each episode (40%) compared with BL (19%; p < 0.0001). In the latter group, connectivity remained elevated 15 min post-AIH (30%; p = 0.0002). Inhibitory C-IN connectivity increased during H1-H3 (4.5%; p = 0.0160), but was reduced 15 min post-AIH (0.5%; p = 0.0439). Spike-triggered averaging indicated that a subset of C-INs is synaptically coupled to phrenic motoneurons and excitatory inputs to these "pre-phrenic" cells increased during AIH. We conclude that AIH alters connectivity of the midcervical spinal network. To our knowledge, this is the first demonstration that AIH induces plasticity within the propriospinal network.SIGNIFICANCE STATEMENT Acute intermittent hypoxia (AIH) can trigger spinal plasticity associated with sustained increases in respiratory, somatic, and/or autonomic motor output. The impact of AIH on cervical spinal interneuron (C-IN) discharge and connectivity is unknown. Our results demonstrate that AIH recruits excitatory C-INs into the spinal respiratory (phrenic) network. AIH also enhances excitatory and reduces inhibitory connections among the C-IN network. We conclude that C-INs are part of the respiratory, somatic, and/or autonomic response to AIH, and that propriospinal plasticity may contribute to sustained increases in motor output after AIH.


Asunto(s)
Potenciales de Acción/fisiología , Hipoxia de la Célula/fisiología , Médula Cervical/fisiología , Interneuronas/fisiología , Plasticidad Neuronal/fisiología , Oxígeno/metabolismo , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Sinapsis/fisiología , Transmisión Sináptica/fisiología
6.
J Neurophysiol ; 118(4): 2344-2357, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28615341

RESUMEN

C2 spinal hemilesion (C2Hx) paralyzes the ipsilateral diaphragm, but recovery is possible through activation of "crossed spinal" synaptic inputs to ipsilateral phrenic motoneurons. We tested the hypothesis that high-frequency epidural stimulation (HF-ES) would potentiate ipsilateral phrenic output after subacute and chronic C2Hx. HF-ES (300 Hz) was applied to the ventrolateral C4 or T2 spinal cord ipsilateral to C2Hx in anesthetized and mechanically ventilated adult rats. Stimulus duration was 60 s, and currents ranged from 100 to 1,000 µA. Bilateral phrenic nerve activity and ipsilateral hypoglossal (XII) nerve activity were recorded before and after HF-ES. Higher T2 stimulus currents potentiated ipsilateral phasic inspiratory activity at both 2 and 12 wk post-C2Hx, whereas higher stimulus currents delivered at C4 potentiated ipsilateral phasic phrenic activity only at 12 wk (P = 0.028). Meanwhile, tonic output in the ipsilateral phrenic nerve reached 500% of baseline values at the high currents with no difference between 2 and 12 wk. HF-ES did not trigger inspiratory burst-frequency changes. Similar responses occurred following T2 HF-ES. Increases in contralateral phrenic and XII nerve output were induced by C4 and T2 HF-ES at higher currents, but the relative magnitude of these changes was small compared with the ipsilateral phrenic response. We conclude that following incomplete cervical spinal cord injury, HF-ES of the ventrolateral midcervical or thoracic spinal cord can potentiate efferent phrenic motor output with little impact on inspiratory burst frequency. However, the substantial increases in tonic output indicate that the uninterrupted 60-s stimulation paradigm used is unlikely to be useful for respiratory muscle activation after spinal injury.NEW & NOTEWORTHY Previous studies reported that high-frequency epidural stimulation (HF-ES) activates the diaphragm following acute spinal transection. This study examined HF-ES and phrenic motor output following subacute and chronic incomplete cervical spinal cord injury. Short-term potentiation of phrenic bursting following HF-ES illustrates the potential for spinal stimulation to induce respiratory neuroplasticity. Increased tonic phrenic output indicates that alternatives to the continuous stimulation paradigm used in this study will be required for respiratory muscle activation after spinal cord injury.


Asunto(s)
Diafragma/inervación , Plasticidad Neuronal , Nervio Frénico/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Estimulación de la Médula Espinal/métodos , Animales , Diafragma/fisiología , Femenino , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/terapia
7.
J Neurophysiol ; 115(3): 1372-80, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26683067

RESUMEN

Power spectral analyses of electrical signals from respiratory nerves reveal prominent oscillations above the primary rate of breathing. Acute exposure to intermittent hypoxia can induce a form of neuroplasticity known as long-term facilitation (LTF), in which inspiratory burst amplitude is persistently elevated. Most evidence indicates that the mechanisms of LTF are postsynaptic and also that high-frequency oscillations within the power spectrum show coherence across different respiratory nerves. Since the most logical interpretation of this coherence is that a shared presynaptic mechanism is responsible, we hypothesized that high-frequency spectral content would be unchanged during LTF. Recordings of inspiratory hypoglossal (XII) activity were made from anesthetized, vagotomized, and ventilated 129/SVE mice. When arterial O2 saturation (SaO2) was maintained >96%, the XII power spectrum and burst amplitude were unchanged for 90 min. Three, 1-min hypoxic episodes (SaO2 = 50 ± 10%), however, caused a persistent (>60 min) and robust (>400% baseline) increase in burst amplitude. Spectral analyses revealed a rightward shift of the signal content during LTF, with sustained increases in content above ∼125 Hz following intermittent hypoxia and reductions in power at lower frequencies. Changes in the spectral content during LTF were qualitatively similar to what occurred during the acute hypoxic response. We conclude that high-frequency content increases during XII LTF in this experimental preparation; this may indicate that intermittent hypoxia-induced plasticity in the premotor network contributes to expression of XII LTF.


Asunto(s)
Nervio Hipogloso/fisiología , Hipoxia/fisiopatología , Potenciación a Largo Plazo , Animales , Nervio Hipogloso/fisiopatología , Masculino , Ratones , Potenciales Sinápticos
8.
J Neurophysiol ; 114(4): 2162-86, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26203111

RESUMEN

Hyperventilation is a common feature of disordered breathing. Apnea ensues if CO2 drive is sufficiently reduced. We tested the hypothesis that medullary raphé, ventral respiratory column (VRC), and pontine neurons have functional connectivity and persistent or evoked activities appropriate for roles in the suppression of drive and rhythm during hyperventilation and apnea. Phrenic nerve activity, arterial blood pressure, end-tidal CO2, and other parameters were monitored in 10 decerebrate, vagotomized, neuromuscularly-blocked, and artificially ventilated cats. Multielectrode arrays recorded spiking activity of 649 neurons. Loss and return of rhythmic activity during passive hyperventilation to apnea were identified with the S-transform. Diverse fluctuating activity patterns were recorded in the raphé-pontomedullary respiratory network during the transition to hypocapnic apnea. The firing rates of 160 neurons increased during apnea; the rates of 241 others decreased or stopped. VRC inspiratory neurons were usually the last to cease firing or lose rhythmic activity during the transition to apnea. Mayer wave-related oscillations (0.04-0.1 Hz) in firing rate were also disrupted during apnea. Four-hundred neurons (62%) were elements of pairs with at least one hyperventilation-responsive neuron and a correlational signature of interaction identified by cross-correlation or gravitational clustering. Our results support a model with distinct groups of chemoresponsive raphé neurons contributing to hypocapnic apnea through parallel processes that incorporate disfacilitation and active inhibition of inspiratory motor drive by expiratory neurons. During apnea, carotid chemoreceptors can evoke rhythm reemergence and an inspiratory shift in the balance of reciprocal inhibition via suppression of ongoing tonic expiratory neuron activity.


Asunto(s)
Apnea/fisiopatología , Hipocapnia/fisiopatología , Bulbo Raquídeo/fisiopatología , Puente/fisiopatología , Núcleos del Rafe/fisiopatología , Respiración , Potenciales de Acción/fisiología , Animales , Gatos , Electrodos Implantados , Vías Nerviosas/fisiopatología , Neuronas/fisiología , Respiración Artificial
9.
Respir Physiol Neurobiol ; 320: 104182, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37923238

RESUMEN

Cervical spinal cord injury creates lasting respiratory deficits which can require mechanical ventilation long-term. We have shown that closed-loop epidural stimulation (CL-ES) elicits respiratory plasticity in the form of increased phrenic network excitability (Malone et. al., E Neuro, Vol 9, 0426-21.2021, 2022); however, the ability of this treatment to create functional benefits for breathing function per se after injury has not been demonstrated. Here, we demonstrate in C2 hemisected anesthetized rats, a 20-minute bout of CL-ES administered at current amplitudes below the motor threshold restores paralyzed hemidiaphragm activity in-phase with breathing while potentiating contralesional activity. While this acute bout of stimulation did not elicit the increased network excitability seen in our chronic model, a subset of stimulated animals continued spontaneous ipsilesional diaphragm activity for several seconds after stopping stimulation. These results support the use of CL-ES as a therapeutic to rescue breathing after high cervical spinal cord injury, with the potential to lead to lasting recovery and device independence.


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Ratas , Animales , Diafragma , Ratas Sprague-Dawley , Tórax , Respiración , Nervio Frénico , Recuperación de la Función/fisiología
10.
Respir Physiol Neurobiol ; : 104314, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39117159

RESUMEN

Rett syndrome (RTT) is an autism spectrum disorder caused by loss-of-function mutations in the methyl-CPG-binding protein 2 (Mecp2) gene. Frequent apneas and irregular breathing are prevalent in RTT, and also occur in rodent models of the disorder, including Mecp2Bird and Mecp2R168X mice. Sarizotan, a serotonin 5-HT1a and dopamine D2-like receptor agonist, reduces the incidence of apneas and irregular breathing in mouse models of RTT (Abdala et al., 2014). Targeting the 5HT1a receptor alone also improves respiration in RTT mice (Levitt et al., 2013). However, the contribution of D2-like receptors in correcting these respiratory disturbances remains untested. PAOPA, a dopamine D2-like receptor positive allosteric modulator, and quinpirole, a dopamine D2-like receptor orthosteric agonist, were used in conjunction with whole-body plethysmography to evaluate whether activation of D2-like receptors is sufficient to improve breathing disturbances in female heterozygous Mecp2Bird/+ and Mecp2R168X/+ mice. PAOPA did not significantly change apnea incidence or irregularity score in RTT mice. PAOPA also had no effect on the ventilatory response to hypercapnia (7% CO2). In contrast, quinpirole reduced apnea incidence and irregularity scores and improved the hypercapnic ventilatory response in Mecp2R168X/+ and Mecp2Bird/+ mice, while also reducing respiratory rate. These results suggest that D2-like receptors could contribute to the positive effects of sarizotan in the correction of respiratory abnormalities in Rett syndrome. However, positive allosteric modulation of D2-like receptors alone was not sufficient to evoke these effects.

11.
Curr Hypertens Rep ; 15(4): 377-89, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23715920

RESUMEN

It is widely accepted that the pathophysiology of hypertension involves autonomic nervous system dysfunction, as well as a multitude of immune responses. However, the close interplay of these systems in the development and establishment of high blood pressure and its associated pathophysiology remains elusive and is the subject of extensive investigation. It has been proposed that an imbalance of the neuro-immune systems is a result of an enhancement of the "proinflammatory sympathetic" arm in conjunction with dampening of the "anti-inflammatory parasympathetic" arm of the autonomic nervous system. In addition to the neuronal modulation of the immune system, it is proposed that key inflammatory responses are relayed back to the central nervous system and alter the neuronal communication to the periphery. The overall objective of this review is to critically discuss recent advances in the understanding of autonomic immune modulation, and propose a unifying hypothesis underlying the mechanisms leading to the development and maintenance of hypertension, with particular emphasis on the bone marrow, as it is a crucial meeting point for neural, immune, and vascular networks.


Asunto(s)
Médula Ósea/fisiopatología , Encéfalo/fisiopatología , Hipertensión/fisiopatología , Animales , Encéfalo/inmunología , Humanos , Inflamación/fisiopatología , Neuroinmunomodulación/inmunología , Neuroinmunomodulación/fisiología , Sistema Nervioso Simpático/fisiopatología
12.
J Physiol ; 586(17): 4265-82, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18599543

RESUMEN

The dorsolateral (DL) pons modulates the respiratory pattern. With the prevention of lung inflation during central inspiratory phase (no-inflation (no-I or delayed-I) tests), DL pontine neuronal activity increased the strength and consistency of its respiratory modulation, properties measured statistically by the eta(2) value. This increase could result from enhanced respiratory-modulated drive arising from the medulla normally gated by vagal activity. We hypothesized that DL pontine activity during delayed-I tests would be comparable to that following vagotomy. Ensemble recordings of neuronal activity were obtained before and after vagotomy and during delayed-I tests in decerebrate, paralysed and ventilated cats. In general, changes in activity pattern during the delayed-I tests were similar to those after vagotomy, with the exception of firing-rate differences at the inspiratory-expiratory phase transition. Even activity that was respiratory-modulated with the vagi intact became more modulated while withholding lung inflation and following vagotomy. Furthermore, we recorded activity that was excited by lung inflation as well as changes that persisted past the stimulus cycle. Computer simulations of a recurrent inhibitory neural network model account not only for enhanced respiratory modulation with vagotomy but also the varied activities observed with the vagi intact. We conclude that (a) DL pontine neurones receive both vagal-dependent excitatory inputs and central respiratory drive; (b) even though changes in pontine activity are transient, they can persist after no-I tests whether or not changes in the respiratory pattern occur in the subsequent cycles; and (c) models of respiratory control should depict a recurrent inhibitory circuitry, which can act to maintain the stability and provide plasticity to the respiratory pattern.


Asunto(s)
Puente/fisiología , Respiración , Nervio Vago/fisiología , Animales , Gatos , Simulación por Computador , Tos , Modelos Biológicos , Red Nerviosa/fisiología , Neuronas/fisiología , Vagotomía
13.
J Appl Physiol (1985) ; 99(2): 691-8, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15761086

RESUMEN

Although it is well-established that sympathetic activity is modulated with respiration, it is unknown whether neural control of respiration is reciprocally influenced by cardiovascular function. Even though previous studies have suggested the existence of pulse modulation in respiratory neurons, they could not exclude the possibility that such cells were involved in cardiovascular rather than respiratory motor control, owing to neuroanatomic and functional overlaps between brain stem neurons involved in respiratory and cardiovascular control. The aim of this study was to test the hypothesis that respiratory motoneurons and putative premotoneurons are modulated by arterial pulse. An existing data set composed of 72 well-characterized, respiratory-modulated brain stem motoneurons and putative premotoneurons was analyzed using delta(2), a recently described statistic that quantifies the magnitude of arterial pulse-modulated spike activity [Dick TE and Morris KF. J Physiol 556: 959-970, 2004]. Neuronal activity was recorded in the rostral and caudal ventral respiratory groups of 19 decerebrate, neuromuscular-blocked, ventilated cats. Axonal projections were identified by rectified and unrectified spike-triggered averages of recurrent laryngeal nerve activity or by antidromic activation from spinal stimulation electrodes. The firing rates of approximately 30% of these neurons were modulated in phase with both the respiratory and cardiac cycles. Furthermore, arterial pulse modulation occurred preferentially in the expiratory phase in that only expiratory neurons had high delta(2) values and only expiratory activity had significant delta(2) values after partitioning tonic activity into the inspiratory and expiratory phases. The results demonstrate that both respiratory motoneurons and putative premotoneuronal activity can be pulse modulated. We conclude that a cardiac cycle-related modulation is expressed in respiratory motor activity, complementing the long-recognized respiratory modulation of sympathetic nerve activity.


Asunto(s)
Potenciales de Acción/fisiología , Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología , Pulmón/inervación , Pulmón/fisiología , Neuronas Motoras/fisiología , Ventilación Pulmonar/fisiología , Animales , Relojes Biológicos/fisiología , Gatos , Estado de Descerebración , Retroalimentación/fisiología
14.
J Appl Physiol (1985) ; 96(6): 2057-72, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15133012

RESUMEN

The expiration reflex is a distinct airway defensive response characterized by a brief, intense expiratory effort and coordinated adduction and abduction of the laryngeal folds. This study addressed the hypothesis that the ventrolateral medullary respiratory network participates in the reflex. Extracellular neuron activity was recorded with microelectrode arrays in decerebrated, neuromuscular-blocked, ventilated cats. In 32 recordings (17 cats), 232 neurons were monitored in the rostral (including Bötzinger and pre-Bötzinger complexes) and caudal ventral respiratory group. Neurons were classified by firing pattern, evaluated for spinal projections, functional associations with recurrent laryngeal and lumbar nerves, and firing rate changes during brief, large increases in lumbar motor nerve discharge (fictive expiration reflex, FER) elicited during mechanical stimulation of the vocal folds. Two hundred eight neurons were respiratory modulated, and 24 were nonrespiratory; 104 of the respiratory and 6 of the nonrespiratory-modulated neurons had altered peak firing rates during the FER. Increased firing rates of bulbospinal neurons and expiratory laryngeal premotor and motoneurons during the expiratory burst of FER were accompanied by changes in the firing patterns of putative propriobulbar neurons proposed to participate in the eupneic respiratory network. The results support the hypothesis that elements of the rostral and caudal ventral respiratory groups participate in generating and shaping the motor output of the FER. A model is proposed for the participation of the respiratory network in the expiration reflex.


Asunto(s)
Gatos/fisiología , Espiración/fisiología , Bulbo Raquídeo/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Animales , Vías Eferentes/fisiología , Femenino , Masculino , Reflejo/fisiología , Fenómenos Fisiológicos Respiratorios
15.
J Appl Physiol (1985) ; 94(1): 93-100, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12486018

RESUMEN

Chemical lesions in the medullary raphe nuclei region influence cough. This study examined whether firing patterns of caudal medullary midline neurons were altered during cough. Extracellular neuron activity was recorded with microelectrode arrays in decerebrated, neuromuscular-blocked, ventilated cats. Cough-like motor patterns (fictive cough) in phrenic and lumbar nerves were elicited by mechanical stimulation of the intrathoracic trachea. Discharge patterns of respiratory and nonrespiratory-modulated neurons were altered during cough cycles (58/133); 45 increased and 13 decreased activity. Fourteen cells changed firing rate during the inspiratory and/or expiratory phases of cough. Altered patterns in 43 cells were associated with the duration of, or extended beyond, the cough episodes. The different response categories suggest that multiple factors influence the discharge patterns during coughing: e.g., respiratory-modulated and tonic inputs and intrinsic connections. These results suggest involvement of midline neurons (i.e., raphe nuclei) in the cough reflex.


Asunto(s)
Tos/fisiopatología , Bulbo Raquídeo/fisiopatología , Neuronas/fisiología , Núcleos del Rafe/fisiopatología , Animales , Gatos , Estado de Descerebración , Electrofisiología , Femenino , Plexo Lumbosacro/fisiopatología , Masculino , Nervio Frénico/fisiopatología , Estimulación Física , Respiración , Sistema Respiratorio/inervación , Factores de Tiempo , Tráquea/fisiopatología
17.
Respir Physiol Neurobiol ; 142(1): 43-54, 2004 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-15351303

RESUMEN

A network of neurons in the rostral dorsal lateral pons and pons/mescencephalic junction constitute the pontine respiratory group (PRG) and is essential for reflex cough. As a next step in understanding the role of the PRG in the expression of the cough reflex, we examined neuron firing rates during fictive cough in cats. Decerebrated, thoracotomized, paralyzed, cycle-triggered ventilated adult cats were used. Extracellular activity of many single neurons and phrenic and lumbar neurograms were monitored during fictive cough produced by mechanical stimulation of the intrathoracic trachea. Neurons were tested during control periods for respiratory modulation of firing rate by cycle-triggered histograms and statistical tests. Most respiratory modulated cells were continuously active with various superimposed respiratory patterns; major categories included inspiratory decrementing (I-Dec), expiratory decrementing (E-Dec) and expiratory augmenting (E-Aug). There were alterations in the discharge patterns of respiratory, as well as, non-respiratory modulated neurons during cough. The results suggest an involvement of the PRG in the configuration of the cough motor pattern.


Asunto(s)
Potenciales de Acción/fisiología , Tos/fisiopatología , Estado de Descerebración/fisiopatología , Neuronas/fisiología , Puente/patología , Respiración , Animales , Gatos , Tos/etiología , Femenino , Frecuencia Cardíaca/fisiología , Masculino , Neuronas/clasificación , Estimulación Física , Nervios Espinales/fisiopatología
18.
Prog Brain Res ; 209: 191-205, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24746049

RESUMEN

Cardiorespiratory coupling is an encompassing term describing more than the well-recognized influences of respiration on heart rate and blood pressure. Our data indicate that cardiorespiratory coupling reflects a reciprocal interaction between autonomic and respiratory control systems, and the cardiovascular system modulates the ventilatory pattern as well. For example, cardioventilatory coupling refers to the influence of heart beats and arterial pulse pressure on respiration and is the tendency for the next inspiration to start at a preferred latency after the last heart beat in expiration. Multiple complementary, well-described mechanisms mediate respiration's influence on cardiovascular function, whereas mechanisms mediating the cardiovascular system's influence on respiration may only be through the baroreceptors but are just being identified. Our review will describe a differential effect of conditioning rats with either chronic intermittent or sustained hypoxia on sympathetic nerve activity but also on ventilatory pattern variability. Both intermittent and sustained hypoxia increase sympathetic nerve activity after 2 weeks but affect sympatho-respiratory coupling differentially. Intermittent hypoxia enhances sympatho-respiratory coupling, which is associated with low variability in the ventilatory pattern. In contrast, after constant hypobaric hypoxia, 1-to-1 coupling between bursts of sympathetic and phrenic nerve activity is replaced by 2-to-3 coupling. This change in coupling pattern is associated with increased variability of the ventilatory pattern. After baro-denervating hypobaric hypoxic-conditioned rats, splanchnic sympathetic nerve activity becomes tonic (distinct bursts are absent) with decreases during phrenic nerve bursts and ventilatory pattern becomes regular. Thus, conditioning rats to either intermittent or sustained hypoxia accentuates the reciprocal nature of cardiorespiratory coupling. Finally, identifying a compelling physiologic purpose for cardiorespiratory coupling is the biggest barrier for recognizing its significance. Cardiorespiratory coupling has only a small effect on the efficiency of gas exchange; rather, we propose that cardiorespiratory control system may act as weakly coupled oscillator to maintain rhythms within a bounded variability.


Asunto(s)
Hemodinámica , Fenómenos Fisiológicos Respiratorios , Sistema Nervioso Simpático/fisiología , Animales , Humanos , Periodicidad , Ratas
19.
Prog Brain Res ; 212: 1-23, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25194190

RESUMEN

Respiratory modulation seen in the sympathetic nerve activity (SNA) implies that the respiratory and sympathetic networks interact. During hypertension elicited by chronic intermittent hypoxia (CIH), the SNA displays an enhanced respiratory modulation reflecting strengthened interactions between the networks. In this chapter, we review a series of experimental and modeling studies that help elucidate possible mechanisms of sympatho-respiratory coupling. We conclude that this coupling significantly contributes to both the sympathetic baroreflex and the augmented sympathetic activity after exposure to CIH. This conclusion is based on the following findings. (1) Baroreceptor activation results in perturbation of the respiratory pattern via transient activation of postinspiratory neurons in the Bötzinger complex (BötC). The same BötC neurons are involved in the respiratory modulation of SNA, and hence provide an additional pathway for the sympathetic baroreflex. (2) Under hypercapnia, phasic activation of abdominal motor nerves (AbN) is accompanied by synchronous discharges in SNA due to the common source of this rhythmic activity in the retrotrapezoid nucleus (RTN). CIH conditioning increases the CO2 sensitivity of central chemoreceptors in the RTN which results in the emergence of AbN and SNA discharges under normocapnic conditions similar to those observed during hypercapnia in naïve animals. Thus, respiratory-sympathetic interactions play an important role in defining sympathetic output and significantly contribute to the sympathetic activity and hypertension under certain physiological or pathophysiological conditions, and the theoretical framework presented may be instrumental in understanding of malfunctioning control of sympathetic activity in a variety of disease states.


Asunto(s)
Generadores de Patrones Centrales/fisiología , Fenómenos Fisiológicos Respiratorios , Sistema Nervioso Simpático/fisiología , Animales , Barorreflejo/fisiología , Humanos
20.
Hypertension ; 63(3): 542-50, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24366083

RESUMEN

Autonomic nervous system dysfunction, exaggerated inflammation, and impaired vascular repair are all hallmarks of hypertension. Considering that bone marrow (BM) is a major source of the inflammatory cells (ICs) and endothelial progenitor cells (EPCs), we hypothesized that impaired BM-autonomic nervous system interaction contributes to dysfunctional BM activity in hypertension. In the spontaneously hypertensive rat (SHR), we observed a >30% increase in BM and blood ICs (CD4.8(+)) and a >50% decrease in EPCs (CD90(+).CD4.5.8(-)) when compared with the normotensive Wistar-Kyoto rat. Increased tyrosine hydroxylase (70%) and norepinephrine (160%) and decreased choline acetyl transferase (30%) and acetylcholine esterase (55%) indicated imbalanced autonomic nervous system in SHR BM. In Wistar-Kyoto rat, night time-associated elevation in sympathetic nerve activity (50%) and BM norepinephrine (41%) was associated with increased ICs (50%) and decreased EPCs (350%) although BM sympathetic denervation decreased ICs (25%) and increased EPCs (40%). In contrast, these effects were blunted in SHR, possibly because of chronic downregulation of BM adrenergic receptor α2a (by 50%-80%) and ß2 (30%-45%). Application of norepinephrine resulted in increased BM IC activation/release, which was prevented by preadministration of acetylcholine. Electrophysiological recordings of femoral sympathetic nerve activity showed a more robust femoral sympathetic nerve activity in SHR when compared with Wistar-Kyoto rat, peaking earlier in the respiratory cycle, indicative of increased sympathetic tone. Finally, manganese-enhanced MRI demonstrated that presympathetic neuronal activation in SHR was associated with an accelerated retrograde transport of the green fluorescent protein-labeled pseudorabies virus from the BM. These observations demonstrate that a dysfunctional BM autonomic nervous system is associated with imbalanced EPCs and ICs in hypertension.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Presión Sanguínea/fisiología , Médula Ósea/inervación , Hipertensión/fisiopatología , Animales , Médula Ósea/fisiopatología , Modelos Animales de Enfermedad , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA