Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 96(1): e0113021, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34613785

RESUMEN

Tick-borne encephalitis virus (TBEV), of the genus Flavivirus, is a causative agent of severe encephalitis in regions of endemicity of northern Asia and central and northern Europe. Interferon-induced transmembrane proteins (IFITMs) are restriction factors that inhibit the replication cycles of numerous viruses, including flaviviruses such as West Nile virus, dengue virus, and Zika virus. Here, we demonstrate the role of IFITM1, IFITM2, and IFITM3 in the inhibition of TBEV infection and in protection against virus-induced cell death. We show that the most significant role is that of IFITM3, including the dissection of its functional motifs by mutagenesis. Furthermore, through the use of CRISPR-Cas9-generated IFITM1/3-knockout monoclonal cell lines, we confirm the role and additive action of endogenous IFITMs in TBEV suppression. However, the results of coculture assays suggest that TBEV might partially escape interferon- and IFITM-mediated suppression during high-density coculture infection when the virus enters naive cells directly from infected donor cells. Thus, cell-to-cell spread may constitute a strategy for virus escape from innate host defenses. IMPORTANCE TBEV infection may result in encephalitis, chronic illness, or death. TBEV is endemic in northern Asia and Europe; however, due to climate change, new centers of endemicity have arisen. Although effective TBEV vaccines have been approved, vaccination coverage is low, and due to the lack of specific therapeutics, infected individuals depend on their immune responses to control the infection. IFITM proteins are components of the innate antiviral defenses that suppress cell entry of many viral pathogens. However, no studies on the role of IFITM proteins in TBEV infection have been published thus far. Understanding antiviral innate immune responses is crucial for the future development of antiviral strategies. Here, we show the important role of IFITM proteins in the inhibition of TBEV infection and virus-mediated cell death. However, our data suggest that TBEV cell-to-cell spread may be less prone to both interferon- and IFITM-mediated suppression, potentially facilitating escape from IFITM-mediated immunity.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Encefalitis Transmitida por Garrapatas/metabolismo , Encefalitis Transmitida por Garrapatas/virología , Interacciones Huésped-Patógeno , Interferones/metabolismo , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Línea Celular , Efecto Citopatogénico Viral , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Susceptibilidad a Enfermedades , Encefalitis Transmitida por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/inmunología , Expresión Génica , Técnicas de Silenciamiento del Gen , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Familia de Multigenes , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Replicación Viral
2.
J Cell Biol ; 223(4)2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38456967

RESUMEN

The outermost layer of centrosomes, called pericentriolar material (PCM), organizes microtubules for mitotic spindle assembly. The molecular interactions that enable PCM to assemble and resist external forces are poorly understood. Here, we use crosslinking mass spectrometry (XL-MS) to analyze PLK-1-potentiated multimerization of SPD-5, the main PCM scaffold protein in C. elegans. In the unassembled state, SPD-5 exhibits numerous intramolecular crosslinks that are eliminated after phosphorylation by PLK-1. Thus, phosphorylation induces a structural opening of SPD-5 that primes it for assembly. Multimerization of SPD-5 is driven by interactions between multiple dispersed coiled-coil domains. Structural analyses of a phosphorylated region (PReM) in SPD-5 revealed a helical hairpin that dimerizes to form a tetrameric coiled-coil. Mutations within this structure and other interacting regions cause PCM assembly defects that are partly rescued by eliminating microtubule-mediated forces, revealing that PCM assembly and strength are interdependent. We propose that PCM size and strength emerge from specific, multivalent coiled-coil interactions between SPD-5 proteins.


Asunto(s)
Caenorhabditis elegans , Proteínas de Ciclo Celular , Centrosoma , Quinasa Tipo Polo 1 , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Quinasa Tipo Polo 1/metabolismo
3.
bioRxiv ; 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37293020

RESUMEN

During mitotic spindle assembly, microtubules generate tensile stresses on pericentriolar material (PCM), the outermost layer of centrosomes. The molecular interactions that enable PCM to assemble rapidly and resist external forces are unknown. Here we use cross-linking mass spectrometry to identify interactions underlying supramolecular assembly of SPD-5, the main PCM scaffold protein in C. elegans . Crosslinks map primarily to alpha helices within the phospho-regulated region (PReM), a long C-terminal coiled-coil, and a series of four N-terminal coiled-coils. PLK-1 phosphorylation of SPD-5 creates new homotypic contacts, including two between PReM and the CM2-like domain, and eliminates numerous contacts in disordered linker regions, thus favoring coiled-coil-specific interactions. Mutations within these interacting regions cause PCM assembly defects that are partly rescued by eliminating microtubule-mediated forces. Thus, PCM assembly and strength are interdependent. In vitro , self-assembly of SPD-5 scales with coiled-coil content, although there is a defined hierarchy of association. We propose that multivalent interactions among coiled-coil regions of SPD-5 build the PCM scaffold and contribute sufficient strength to resist microtubule-mediated forces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA