Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 60(2): 927-936, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-32978849

RESUMEN

Nitrogen fixation is an essential process for sustaining life. Tremendous efforts have been made on the photodriven fixation of nitrogen into ammonia. However, the disproportionation of dinitrogen to ammonia and nitrate under ambient conditions has remained a grand challenge. In this work, the photodriven disproportionation of nitrogen is realized in water under visible light and ambient conditions using Fe-doped TiO2 microspheres. The oxygen vacancies associated with the Fe dopants activate chemisorbed N2 molecules, which can then be fixed into NH3 with H2 O2 as the oxidation product. The generated H2 O2 thereafter oxidizes NH3 into nitrate. This disproportionation reaction can be turned to the reductive one by loading plasmonic Au nanoparticles in the doped TiO2 microspheres. The generated H2 O2 can be effectively decomposed by the Au nanoparticles, resulting in the transformation of the disproportionation reaction to the completely reductive nitrogen photofixation.

2.
Adv Mater ; 34(2): e2104226, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34655458

RESUMEN

Plasmonic photocatalysis has received much attention owing to attractive plasmonic enhancement effects in improving the solar-to-chemical conversion efficiency. However, the photocatalytic efficiencies have remained low mainly due to the short carrier lifetime caused by the rapid recombination of plasmon-generated hot charge carriers. Although plasmonic metal-semiconductor heterostructures can improve the separation of hot charge carriers, a large portion of the hot charge carriers are lost when they cross the Schottky barrier. Herein, a Schottky-barrier-free plasmonic semiconductor photocatalyst, MoO3- x , which allows for efficient N2 photofixation in a "one-stone-two-birds" manner, is demonstrated. The oxygen vacancies in MoO3- x serve as the "stone." They "kill two birds" by functioning as the active sites for the chemisorption of N2 molecules and inducing localized surface plasmon resonance for the generation of hot charge carriers. Benefiting from this unique strategy, plasmonic MoO3- x exhibits a remarkable photoreactivity for NH3 production up to the wavelength of 1064 nm with apparent quantum efficiencies over 1%, and a solar-to-ammonia conversion efficiency of 0.057% without any hole scavenger. This work shows the great potential of plasmonic semiconductors to be directly used for photocatalysis. The concept of the Schottky-barrier-free design will pave a new path for the rational design of efficient photocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA