Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 20(10): 1323-1331, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34562235

RESUMEN

To meet the requirements of theranostics with diagnosis and treatment, photodynamic-based therapy is simultaneously enabled with the incorporation of methylene blue (MB) as imaging agent and photosensitizer in core-shell structured drug vehicles. Citrate-modified hydroxyapatite (HAp) powders are first grafted with ß-cyclodextrin (CD), then combined with MB molecules through electrostatic interactions, and finally encapsulated with carbon shells through hydro-thermal carbonization of glucose to prepare HAp-CD-MB@C powders. Processing parameters of carbonization temperature, glucose addition, reaction time and CD addition are varied to prepare drug carriers with modulated crystallite degrees and photo-physical properties. Increased crystallite sizes of HAp are accompanied with the formation of C=O, C=C and C-OH groups in carbon shell, endowing sustainable release behaviors of MB through carbonous structures. High photoluminescence intensities are fairly related with red-shifted vibration peaks of groups in tightly combined MB molecules through hydrogen bonds. This hydrogen bonding effect is significantly increased for HAp-CD-MB@C140 with the splitting of CH3-involved vibration peaks in infrared spectra, which causes increase in photoluminescence intensity and four-fold increase in generation ratio of singlet oxygen. The present studies shed light on preparation of core-shell structured drug carriers, modulation of aggregate states of MB molecules, enhancement of photo-physical properties and improvement of generation ratio of singlet oxygen during photodynamic-based therapy.


Asunto(s)
Carbono/química , Hidroxiapatitas/química , Azul de Metileno/química , beta-Ciclodextrinas/química , Cristalización , Portadores de Fármacos/química , Glucosa/química , Enlace de Hidrógeno , Azul de Metileno/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/metabolismo , Oxígeno Singlete/química , Temperatura
2.
J Colloid Interface Sci ; 652(Pt A): 132-141, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37591075

RESUMEN

Solid-state sodium-ion batteries have attracted significant attention due to their rich resources, high safety, and high energy density. However, the lower ionic conductivity and inferior interfacial contact between solid-state electrolytes (SSEs) and electrodes limit their practical applications. Herein, polyvinylideneuoride-co-hexauoropropylene (PVDF-HFP) membrane is selected and a novel sandwiched composite PVDF-HFP/Na2.5Zr1.95Ce0.05Si2.2P0.8O11.3F0.7/PVDF-HFP (G-NZC0.05SPF0.7-G) SSEs is well designed. The ionic conductivity of Na3Zr2Si2PO12 is enhanced by Ce4+/F- co-doping. The effects of Ce4+ and F- doping on the crystal structure, density, and ionic conductivity for Na3Zr2Si2PO12 are well investigated. The optimal NZC0.05SPF0.7 delivers a high ionic conductivity of 1.39 × 10-3 S cm-1 at 25 â„ƒ. Moreover, the PVDF-HFP membrane can significantly enhance the interface compatibility between NZC0.05SPF0.7 and electrodes. The as-prepared G-NZC0.05SPF0.7-G exhibits a large ionic conductivity of 1.07 × 10-3 S cm-1 at 25 â„ƒ, wide electrochemical stability window up to 4.5 V, high critical current density of 1.2 A cm-2, and stable Na plating/stripping over 600 h at 0.3 A cm-2. The solid-state Na0.67Mn0.47Ni0.33Ti0.2O2/G-NZC0.05SPF0.7-G/Na battery delivers a remarkable cycling stability and rate capability at 25 â„ƒ, indicating that the as-prepared G-NZC0.05SPF0.7-G has a promising application for solid-state SIBs. This study demonstrates an effective strategy to develop advanced solid-state electrolytes for solid-state SIBs.

3.
J Electron Microsc (Tokyo) ; 60(5): 301-5, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21821600

RESUMEN

This study employed a co-precipitation method to synthesize copper-modified hydroxyapatite (HA) powders, where Cu(2+) ions had entered the structure of HA and occupied Ca(1) sites in the columns parallel to the c-axis. Through a hydrothermal treatment, hollow HA/copper (Cu(2)O and/or Cu) microspheres with core-shell structures were prepared in solutions containing glucose, sodium carbonate and sodium citrate. When prolonging the reduction time, Cu(2+) ions dissolved from copper-modified HA were reduced by glucose initially to Cu(+) ions and then to Cu atoms, which would precipitate as copper on the surface of HA. The formation of microspheres with hollow structures was explained by the Kirkendall effect which states that diffusion behaviors of ions were different for HA and copper precipitations. Hybrid HA/copper powders might find their applications in gas sensors, catalysts, electrodes and so on.

4.
Mater Sci Eng C Mater Biol Appl ; 41: 283-91, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24907762

RESUMEN

The formations of non-metabolic stones, bones and teeth were seriously related to the morphology, size and surface reactivity of dicalcium phosphate dihydrate (DCPD). Herein, a facile biomimetic mineralization method with presence of glutamic acid and arginine was employed to fabricate DCPD with well-defined morphology and adjustable crystallite size. In reaction solution containing more arginine, crystallization of DCPD occurred with faster rate of nucleation and higher density of stacked layers due to the generation of more OH(-) ions after hydrolysis of arginine at 37 °C. With addition of fluorescein or acetone, the consumption of OH(-) ions or desolvation reaction of Ca(2+) ions was modulated, which resulted in the fabrication of DCPD with adjustable crystallite sizes and densities of stacked layers. In comparison with fluorescein-loading DCPD, dicalcium phosphate anhydrate was prepared with enhanced photoluminescence properties due to the reduction of self-quenching effect and regular arrangement of encapsulated fluorescein molecules. With addition of more acetone, DCPD was prepared with smaller crystallite size via antisolvent crystallization. The simulated process with addition of amino acids under 37 °C would shed light on the dynamic process of biomineralization for calcium phosphate compounds.


Asunto(s)
Arginina/química , Fosfatos de Calcio/química , Ácido Glutámico/química , Calcio/química , Cristalización , Fluoresceína/química , Hidróxidos/química , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA