RESUMEN
AIM: Lipoxin A4 (LXA4 ) can function as an endogenous 'breaking signal' in inflammation and plays an important role in the progression of endometriosis. The proteome responses to interleukin-1ß (IL-1ß) or LXA4 in human endometriotic stromal cells (ESC) are not well understood. METHODS: In this study, primary ESC were cultured from ovarian endometriosis tissue. Three groups were established: the control group; the IL-1ß stimulation group; and the IL-1ß and LXA4 incubation group. Proteins were assessed on 2-D polyacrylamide gel electrophoresis (2D-PAGE), and differentially expressed protein spots were further identified on matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MALDI-TOF-MS). Wound healing and transwell assays were performed to assess the migration and invasion of ESC after treatment. RESULTS: In total, 40 differentially expressed protein spots were identified successfully on MALDI-TOF-MS. The proteins identified were related to cell structure, metabolism, signal transduction, protein synthesis and membrane structure, processes that may be involved in the development of endometriosis. Vinculin and IL-4 were further analyzed on western blot and quantitative real-time polymerase chain reaction. Moreover, LXA4 could suppress the migration and invasion of ESC induced by IL-1ß. CONCLUSION: LXA4 may inhibit the progression of endometriosis partly by lowering or raising the effect of IL-1ß, mediated via some inflammation-related proteins (e.g. vinculin) and immune response-related protein (e.g. IL-4) in vitro.
Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Endometriosis/metabolismo , Endometrio/metabolismo , Interleucina-1beta/metabolismo , Lipoxinas/farmacología , Proteómica/métodos , Células del Estroma/metabolismo , Adulto , Endometriosis/tratamiento farmacológico , Endometrio/citología , Endometrio/efectos de los fármacos , Femenino , Humanos , Interleucina-1beta/efectos de los fármacos , Células del Estroma/efectos de los fármacosRESUMEN
BACKGROUND: Endometriosis is a benign gynecological disease with the feature of estrogen dependence and inflammation. The function of autophagy and the correlation with inflammation were not yet revealed. METHODS: Autophagosomes were detected by transmission electron microscopy. Gene Expression Omnibus (GEO) database was referred to analyze the expression of autophagy-related genes. Quantification of mRNA and protein expression was examined by qRT-PCR and Western Blot. Immunohistochemistry was performed to explore the expression of proteins in tissues. The mouse model of endometriosis was performed to analyze the autophagic activity and effect of LXA4. RESULTS: The expression of autophagy-related genes in endometriotic lesions were unusually changed. The number of autophagosomes and LC3B-II expression was diminished, and p62 was increased in ectopic lesions from both patients and mice. Interleukin 1ß (IL1ß) attenuated the expression of LC3B and promoted the level p62. The autophagy activator MG-132 upregulated the expression of LC3B and reduced IL1ß, IL6, and p62. LXA4 reversed the inhibitory effect of IL1ß on the expression of LC3B and p62, and blocking the receptor of LXA4 AhR (aryl hydrocarbon receptor) resulted in the incapacitation of LXA4 to influence the effect of IL1ß. LXA4 depressed the phosphorylation of AKT and mTOR to against IL1ß, and blocking AhR negatively regulated the effect of LXA4 on AKT/mTOR pathway. LXA4 reduced the ectopic lesions and the expression of IL1ß and p62, but enhanced LC3B-II in endometriotic mouse models. CONCLUSION: In endometriosis, increased inflammation of ectopic lesions prominently depresses autophagy. LXA4 could regulate autophagy by suppressing inflammatory response through AhR/AKT/mTOR pathway.