Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Biol Sci ; 290(1995): 20230159, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36946117

RESUMEN

Humans exhibit a broad range of post-marital residence patterns and there is growing recognition that post-marital residence predicts women's reproductive success; however, the nature of the relationship is probably dependent on whether co-resident kin are cooperators or competitors. Here, we explore this relationship in a Tibetan population, where couples practice a mixture of post-marital residence patterns, co-residing in the same village with the wife's parents, the husband's parents or endogamously with both sets of parents. Using detailed demographic data from 17 villages we find that women who live with only their own parents have an earlier age at first birth (AFB) and age at last birth (ALB) than women who live with only their parents-in-law. Women who co-reside with both sets of parents have the earliest AFB and ALB. However, those with co-resident older siblings postponed reproduction, suggestive of competition-related delay. Shifts to earlier reproductive timing were also observed in relation to the imposition of family planning policies, in line with Fisherian expectations. Our study provides evidence of the costs and benefits to women's direct fitness of co-residing with different kin, against a backdrop of adaptive responses to cultural constraints on completed fertility.


Asunto(s)
Composición Familiar , Matrimonio , Femenino , Humanos , Factores Socioeconómicos , Reproducción , Fertilidad
2.
Langmuir ; 39(1): 155-167, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36562758

RESUMEN

Conventional methyl silicone oils have poor lubricating properties in boundary lubrication regions, particularly for ceramic/oxide point contact lubrication. In this study, the residues of various organic solvents on the surfaces of Si3N4 spheres/glass disks were used to determine their effect on the lubricating properties of silicone oil 200. The minute ethanol residues significantly enhanced the antifriction and antiwear properties of silicone oil. Compared to the blank sample, the coefficient of friction (COF) and wear volume of silicone oil 200 with the residual ethanol friction pair were reduced by >40% and >98%, respectively. Being immiscible with silicone oil, the minute ethanol residues also removed impurities from the glass surface and maintained a clean interface, thus effectively blocking direct interactions between the friction pair interfaces. In addition, the residual ethanol reduced the atomic force microscope probe-to-glass surface adhesive force in the silicone oil 200 environment, thus allowing it to maintain low COF and wear rates over a broader range of speeds, loads, and times. In contrast to previous work, this study is the first to effectively regulate the lubrication properties of silicone oil using a residual organic solvent. The findings further verified that the adsorption of vapor molecules can significantly alter the surface forces between interfaces. Thus, adjusting the adhesion force through trace amounts of organic solvent residues may provide novel research inputs, thereby guiding the expansion and scope of silicone oil lubrication applications.

3.
Langmuir ; 38(32): 10043-10051, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35915968

RESUMEN

Ceramic friction pairs lubricated with chlorinated-phenyl and methyl-terminated silicone oil (CPSO) systems have potential applications in the aerospace industry. In this study, the effects of the running-in process and temperature on the lubricating performance of CPSO were investigated. The superlubricity of Si3N4/sapphire lubricated with CPSO was realized at >190 °C after H+-ion running-in. The mechanism of this high-temperature superlubricity was investigated by determining the stable adsorption configurations and adsorption energies of CPSO on different surfaces using density functional theory calculations. Compared with that on the Si3N4 surface, the adsorption capacity of CPSO on the hydroxylated SiO2 surface generated by H+-ion running-in increased, whereas the steric hindrance decreased. The viscosity-temperature curve of CPSO was measured, wherein the viscosity and pressure-viscosity coefficient of CPSO considerably decreased with increasing temperature, leading to high-temperature superlubricity in a wide speed/load range. This is the first paper to report oil-based superlubricity at temperatures of 190 °C, or even higher-temperature conditions. Furthermore, it provides guidance for the use of ceramic-CPSO systems in high-temperature conditions, including in the aerospace industry.

4.
Langmuir ; 37(1): 240-248, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33356284

RESUMEN

This paper reports on the hydrothermal synthesis of a novel 2D material, magnesium silicate hydroxide/carbon (MSH/C) core-shell nanoplate, in a graphite-MgO-SiO2-NaOH system at 300 °C and 12 MPa for 48 h. Its significant potentials as an antiwear additive in lubricant oil were subsequently demonstrated. The 2D nanoplates consist of an MSH core and a 1-6 nm thick sp2-hybridized carbon shell with a layer spacing of 0.34 nm. In typical four-ball tests at a maximum Hertzian pressure of 3.4 GPa, the MSH/C core-shell nanoplates nearly eliminated wear, whether suspended in poly alpha-olefin oil or fully formulated lubricating oil, and the corresponding volume wear rates were reduced by 96.33% and 72%, respectively. The excellent antiwear performance was ascribed to the formation of a tribofilm consisting of diffusedly distributed Fe3O4 nanocrystals and carbon- and/or SiOx-containing amorphous structures.

5.
Langmuir ; 37(12): 3628-3636, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33733780

RESUMEN

Liquid superlubricity results in a near-frictionless lubrication state, which can greatly reduce friction and wear under aqueous conditions. However, during the running-in process, a large number of abrasive particles are generated, and because these may lead to a breakdown in superlubricity performance, they should be effectively removed. In this paper, the morphology, size, and composition of abrasive particles were verified using scanning electron microscopy with energy-dispersive X-ray spectroscopy, and their influence on liquid superlubricity was explored through friction tests. Subsequently, different solvents were used to remove the abrasive particles, and the optimal cleaning process was determined by macroscopic tribo-tests and microscopic analysis. Finally, droplet-spreading experiments and a force-curve analysis were carried out to understand the abrasive-particle removal mechanism by different solvents. We found that SiO2 was the main component in the abrasive particles, and micron-sized SiO2 particles resulted in random "wave peaks" in the coefficient of friction and, thus, the superlubricity. Absolute ethanol + ultrapure water was determined to be the optimal solvent for effectively removing abrasive particles from friction-pair surfaces and helped the lubricant in exhibiting an ultralow friction coefficient for long periods of time. We proposed a "wedge" and "wrap" model to explain the abrasive-particle removal mechanism of different solvents. The SiO2 removal mechanism outlined in this study can be applied under aqueous conditions to improve the stability and durability of liquid superlubricity in practical engineering applications.

6.
Langmuir ; 36(24): 6765-6774, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32460491

RESUMEN

The development of new routes or materials to realize superlubricity under high contact pressure can result in energy-saving and reduction of emissions. In this study, superlubricity (µ = 0.0017) under extreme pressure (717 MPa, more than twice the previously reported liquid superlubricity) between the frictional pair of Si3N4/sapphire was achieved by prerunning-in with a H3PO4 (HP) solution followed by lubrication with an aqueous solution consisting of poly(vinyl alcohol) (PVA) and sodium chloride (NaCl). Under the same test condition, the aqueous PVA lubricant did not show superlubricity. Results of X-ray photoelectron spectroscopy and Raman spectroscopy indicate the formation of a PVA-adsorbed film at the frictional interface after lubrication with PVA but not after lubrication with PVA/NaCl, indicating competitive adsorption between hydrated Na+ ions and PVA molecules. The hydrated Na+ ions adsorbed preferentially to the solid surfaces, causing the transformation of the shear interface from a polymer film/polymer film to a solid/polymer film. Meanwhile, the hydrated Na+ ions also produced hydration repulsion force and induced low shear stress between the solid surfaces. Furthermore, NaCl increased the viscosity of the polymer lubricant, enhanced the hydrodynamic effect between interfaces, and decreased direct contact between the friction pair, causing a further reduction in friction. Thus, the superlubricity of the PVA/NaCl mixture is attributed to the combination of hydration and hydrodynamic effects. This study provides a novel route and mechanism for achieving extreme-pressure superlubricity at the macroscale, through the synergistic lubricating effect of hydrated ions and a polymer solution, propelling the industrial application of superlubricity.

7.
Langmuir ; 35(48): 15435-15443, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31125241

RESUMEN

Recently, many studies have reported the ultralow friction coefficient of sliding friction between rigid solid surfaces in aqueous lubrication. A running-in process that goes through high-friction and friction-decreasing regions to a stable ultralow friction region is often required. However, the role of the friction-decreasing region is often ascribed to tribofilm formation in which complexity hindered the quantitative description of the running-in process and the prediction of its subsequent lubrication state. In this work, the frictional energy (Ef) dissipated in the running-in process of a poly(oligo(ethylene glycol) methyl ether acrylate) aqueous lubrication was related to the wear of solid surfaces under different conditions and lubrication states. Experimental results indicated that the high-friction region was in a boundary lubrication state, contributed to most of the wear, and significantly reduced the contact pressure, whereas the friction-decreasing region was in a mixed lubrication state, contributed only to the slight and slow removal of materials, and slightly reduced the contact pressure. Therefore, by establishing relationships among the wear scar diameter, Ef, and the Stribeck curve of the tribological system, the subsequent lubrication state after a running-in process under various working loads and sliding speeds could be quantitatively predicted. The running-in experiments with different aqueous lubrication systems showed good agreement with the prediction of this method. This investigation provides an effective method for the wear and lubrication state prediction after a running-in process, further proving the importance of the Stribeck curve for a lubrication system. This study may also have important implications for the strategy design of the running-in process in various industrial applications.

8.
ACS Appl Mater Interfaces ; 15(6): 8327-8335, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36731875

RESUMEN

Germanium telluride (GeTe) compounds exhibit excellent thermoelectric performance. In this study, copper selenide (Cu2Se) was used to tune the crystal structure and carrier concentration (nH) of GeTe materials. The zT of the 1% Cu2Se-doped GeTe sample reaches 1.32, which is 52% higher than that of the pure phase. The results show that Cu2Se tunes the GeTe crystal structure and carrier concentration to achieve promising enhancements to the thermoelectric performance. Meanwhile, a herringbone-like crystal structure that reduces the lattice thermal conductivity was observed. However, because the directional movement of Cu ions at high temperatures leads to an increase in electrical conductivity, the electronic thermal conductivity also increased. This study focuses on crystal engineering strategies for the study of nontoxic thermoelectric materials.

9.
Nutrients ; 15(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36904146

RESUMEN

Cytidine and uridine are endogenous metabolites in the pyrimidine metabolism pathway, and cytidine is a substrate that can be metabolized into uridine via cytidine deaminase. Uridine has been widely reported to be effective in regulating lipid metabolism. However, whether cytidine could ameliorate lipid metabolism disorder has not yet been investigated. In this research, ob/ob mice were used, and the effect of cytidine (0.4 mg/mL in drinking water for five weeks) on lipid metabolism disorder was evaluated in terms of an oral glucose tolerance test, serum lipid levels, liver histopathological analysis and gut microbiome analysis. Uridine was used as a positive control. Our findings reveal that cytidine could alleviate certain aspects of dyslipidemia and improve hepatic steatosis via modulating the gut microbiota composition in ob/ob mice, especially increasing the abundance of short-chain fatty acids-producing microbiota. These results suggest that cytidine supplementation could be a potential therapeutic approach for dyslipidemia.


Asunto(s)
Dislipidemias , Microbioma Gastrointestinal , Trastornos del Metabolismo de los Lípidos , Ratones , Animales , Citidina/metabolismo , Citidina/farmacología , Hígado/metabolismo , Trastornos del Metabolismo de los Lípidos/metabolismo , Dislipidemias/metabolismo , Uridina , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Dieta Alta en Grasa
10.
Anal Sci ; 38(7): 977-988, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35616886

RESUMEN

Dehydroandrographolide (DA), one of the crucial diterpenoids of Andrographis paniculata (Burm.F.) Nees, which has been widely used clinically due to its excellent biological activities and pharmacological safety. Until now, various investigations about the biological activities, pharmacokinetic profiles, and in vitro metabolism of DA have been conducted. However, information about the in vivo biotransformation of DA was still not available. In this study, a rapid and reliable approach based on stable isotope labeling and UPLC-Q/TOF-MS was developed and applied for the first systematic research about the in vivo metabolism of DA. As a result, a total of 35 metabolites were identified in rat urine, bile, plasma, and feces samples after DA was orally administered at the dose of 95 mg/kg, and 33 of them were further verified based on stable isotope labeling. The major metabolic pathways for DA were hydroxylation, hydration, sulfonation, sulfate conjugation, and glucuronidation. Meanwhile, sulfonation, sulfate conjugation, and amino acids conjugation of DA were reported for the first time. This is the first systematic investigation of the in vivo metabolism of DA in rats, and the identification of these metabolites might provide scientific and reliable support for a full understanding of the metabolism of DA.


Asunto(s)
Sulfatos , Espectrometría de Masas en Tándem , Animales , Cromatografía Líquida de Alta Presión/métodos , Diterpenos , Marcaje Isotópico , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem/métodos
11.
Food Funct ; 13(13): 6934-6946, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35696250

RESUMEN

Glucolipid metabolism disorders pose a serious and global health problem, and more effective prevention and treatment methods are urgently needed. In this study, ob/ob mice were used to explore the potential mechanism explaining how asiatic acid (AA) regulates glucolipid metabolism disorders. Five-week AA treatment (30 mg kg-1) significantly improved a host of metabolic factors in ob/ob mice, including hyperglycemia, hyperlipidemia, insulin resistance, and liver histopathology. Combined analysis of untargeted liver metabolomics, liver transcriptomics, and the gut microbiome was conducted, and the results showed that AA alleviates metabolic disorders in ob/ob mice through regulating pyrimidine metabolism, activating PPAR-γ, and modulating gut microbiota. AA treatment remarkedly increased the levels of cytosine and cytidine, two crucial endogenous metabolites related to pyrimidine metabolism, which were significantly decreased in ob/ob mice. AA treatment also affected the levels of 13-S-hydroxyoctadecadienoic acid, an endogenous PPAR-γ agonist. The abundances of Lachnospiraceae_NK4A136_group and norank_f__norank_o__Clostridia_UCG-014 were increased after AA treatment. Meanwhile, correlation analysis showed that endogenous metabolites and gut microbiota were strongly correlated. These findings indicated that AA supplements might be beneficial for the prevention of metabolic disorders.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Metabólicas , Animales , Enfermedades Metabólicas/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Triterpenos Pentacíclicos , Receptores Activados del Proliferador del Peroxisoma , Pirimidinas
12.
Sci Adv ; 8(11): eabm0984, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35294236

RESUMEN

Traction stress between contact objects is ubiquitous and crucial for various physical, biological, and engineering processes such as momentum transfer, tactile perception, and mechanical reliability. Newly developed techniques including electronic skin or traction force microscopy enable traction stress measurement. However, measuring the three-dimensional distribution during a dynamic process remains challenging. Here, we demonstrated a method based on stereo vision to measure three-dimensional traction stress with high spatial and temporal resolution. It showed the ability to image the two-stage adhesion failure of bionic microarrays and display the contribution of elastic resistance and adhesive traction to rolling friction at different contact regions. It also revealed the distributed sucking and sealing effect of the concavity pedal waves that propelled a snail crawling in the horizontal, vertical, and upside-down directions. We expected that the method would advance the understanding of various interfacial phenomena and greatly benefit related applications across physics, biology, and robotics.

13.
Plants (Basel) ; 11(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36432830

RESUMEN

The plant-specific SHI-related sequence (SRS) family of transcription factors plays a vital role in growth regulation, plant development, phytohormone biosynthesis, and stress response. However, the genome-wide identification and role in the abiotic stress-related functions of the SRS gene family were not reported in white sweet clover (Melilotus albus). In this study, nine M. albus SRS genes (named MaSRS01-MaSRS09) were identified via a genome-wide search method. All nine genes were located on six out of eight chromosomes in the genome of M. albus and duplication analysis indicated eight segmentally duplicated genes in the MaSRS family. These MaSRS genes were classified into six groups based on their phylogenetic relationships. The gene structure and motif composition results indicated that MaSRS members in the same group contained analogous intron/exon and motif organizations. Further, promoter region analysis of MaSRS genes uncovered various growth, development, and stress-responsive cis-acting elements. Protein interaction networks showed that each gene has both functions of interacting with other genes and members within the family. Moreover, real-time quantitative PCR was also performed to verify the expression patterns of nine MaSRS genes in the leaves of M. albus. The results showed that nine MaSRSs were up- and down-regulated at different time points after various stress treatments, such as salinity, low-temperature, salicylic acid (SA), and methyl jasmonate (MeJA). This is the first systematic study of the M. albus SRS gene family, and it can serve as a strong foundation for further elucidation of the stress response and physiological improvement of the growth functions in M. albus.

14.
J Colloid Interface Sci ; 599: 667-675, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33984761

RESUMEN

HYPOTHESIS: Wettability effect has long been a concern in various aqueous lubrication systems including biological and industrial applications. The wettability may affect lubrication performance by changing interfacial viscosity or hydration force. The key point to reveal the mechanism is to design an ideal experimental system to exclude other bulk factors other than surface wettability. EXPERIMENTS: In this work, silicon surfaces with different treatments were used to study the single factor effect of wettability on aqueous lubrication. The normal and friction forces of these surfaces were quantified by atomic force microscopy (AFM) in water environment. The interfacial viscosity was evaluated according to the probe dynamic approaching process. Macroscale and microscale lubrication experiments of other materials were also conducted as verification and supplement. FINDINGS: A semi-quantitative relationship between friction and wettability was revealed and attributed to the competition between the attractive van der Waals interactions and wettability-dependent repulsive hydration interaction, which determined the strength of the adhesive interaction and dominated the sliding energy dissipation. The contribution of viscous effect of water was considered to be relatively minor. The findings provide an in-depth understanding of aqueous lubrication and outline important guidelines for tuning adhesion and friction.

15.
J Colloid Interface Sci ; 539: 342-350, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30594009

RESUMEN

HYPOTHESIS: Aqueous lubricants exhibit versatile advantages over oil-based lubricants. However, it still remains a challenge for the aqueous solutions to obtain excellent lubrication properties with high contact pressure on macroscale. EXPERIMENTS: In this work, a comb-typed poly(oligo(ethylene glycol) methylether acrylate) (P(OEGMA)) was successfully synthesized via RAFT polymerization. Rheological, morphological and tribological properties of prepared P(OEGMA) aqueous solutions were characterized via a rheometer, cryo-SEM and ball-on-disk tribometer, respectively. FINDINGS: The synthesized P(OEGMA) exhibited a uniformly smaller size than that of the commercial linear polyethylene glycol (PEG), leading to reduced viscosities in aqueous solutions. The obtained P(OEGMA) aqueous solutions achieved outstandingly ultralow friction coefficients (µâ€¯< 0.01) and a good wear-resistance under high pressure (>300 MPa, two-fold increase than reported in the previous literature). The desirable lubricating performances can be attributed to the well-established running-in period, a good interfacial adsorption property between polymer molecules and solid surfaces, the hydration effect as well as the hydrodynamic effect. The current finding reveals the excellent aqueous lubrication properties possessed by the synthesized comb-typed P(OEGMA), which can broaden the development of aqueous lubricants in practical engineering fields.

16.
ACS Appl Mater Interfaces ; 9(27): 22612-22619, 2017 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-28640582

RESUMEN

Extensive attention has been focused on thermoelectric performance optimization of SnTe because of its potential in waste heat recovery. Here, we fabricate high thermoelectric performance Se/Cd codoped SnTe octahedral particles by microwave-stimulated solvothermal method. The SnTe-based octahedral particles have sizes ranging from several micrometers to hundreds of nanometers, forming dense bulks after spark plasma sintering. Combined with the strong point defect scattering by Se and Cd dopants, a low thermal conductivity of 1.8 W m-1 K-1 at 773 K is obtained in the Se/Cd codoped Sn0.98Cd0.02Te0.9Se0.1 sample. Se and Cd dopants can optimize the band structure of SnTe and boost the power factors, resulting in a promising peak ZT of ∼0.78 at 773 K in the Se/Cd codoped Sn0.98Cd0.02Te0.9Se0.1 sample, which is significantly higher than those of undoped SnTe and Se-doped SnTe samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA