Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Comput Chem ; 45(10): 610-621, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38058240

RESUMEN

The development of the catalytic regio- and enantioselective hydrofunctionalization of 1,3-dienes remains a challenge and requires deep insight into the reaction mechanisms. We herein thoroughly studied the reaction mechanism of the Ni-catalyzed hydroalkylation of 1,3-dienes with ketones by density functional theory (DFT) calculations. It reveals that the reaction is initiated by stepwise oxidative addition of EtO-H followed by 1,3-diene migratory insertion to generate the alkylnickel(II) intermediate, rather than the experimentally proposed ligand-to-ligand hydrogen transfer (LLHT) mechanism. In addition, we rationalized the role of t BuOK in the subsequent addition of enolate of ketone and transmetalation process. Based on the whole catalysis, the CC reductive elimination step, turns out to be the rate- and enantioselectivity-determining step. Furthermore, we disclosed the origins of the regio- and enantioselectivity of the product, and found that the 1,2-selectivity lies in the combination effects of the ligand-substrate electrostatic interactions, orbital interactions and Pauli repulsions, while the enantioselectivity mainly arises from substrate-ligand steric repulsions. Based on mechanistic study, new biaryl bisphosphine ligands affording higher enantioselectivity were designed, which will help to improve current catalytic systems and develop new transition-metal-catalyzed hydroalkylations.

2.
J Comput Chem ; 43(7): 440-447, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34951487

RESUMEN

Density functional theory (DFT) calculations have been performed to gain insight into the reaction mechanism of the Co(I)-catalyzed asymmetric [2 + 2] cycloaddition reaction of enyne 1a with ethylene 2 to give the functionalized cyclobutene E-4a possessing a chiral, all-carbon quaternary center in the ring framework (Science, 361, 68-72). This study reveals that the whole catalysis can be characterized via three stages: (i) oxidative dimerization followed by reductive elimination gives the intermediate IM3, (ii) the alkenyl-Co(III) metallacycloheptene IM6 formation with the addition of another equivalent ethylene via an oxidative dimerization process, (iii) ß-Hydrogen elimination and reductive elimination from IM6 to result in the final product E-4a and regenerate the active speices IM1 for the next catalytic cycle. Each stage is kinetically and thermodynamically feasible for experimental realization under mild conditions, and the formation of the alkenyl-Co(III) metallacycloheptene IM6, with a barrier of 27.2 kcal mol-1 (i.e., IM2 → TS4), should be the rate-determining step (RDS) during the whole catalysis. In addition, the origins of enantioselectivity and regioselectivity of the product are discussed.

3.
Angew Chem Int Ed Engl ; 60(25): 13865-13870, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-33826215

RESUMEN

Heteronuclear calcium-iron carbonyl cation complexes in the form of [CaFe(CO)n ]+ (n=5-12) are produced in the gas phase. Infrared photodissociation spectroscopy in conjunction with quantum chemical calculations confirm that the n=10 complex is the coordination saturated ion where a Fe(CO)4 fragment is bonded with a Ca(CO)6 fragment through two side-on bridging carbonyl ligands. Bonding analysis indicates that it is best described by the bonding interactions between a [Ca(CO)6 ]2+ dication and an [Fe(CO)4 ]- anion forming a Fe→Ca d-d dative bond in the [(CO)6 Ca-Fe(CO)4 ]+ structure, which enriches the pool of experimentally observed complexes of calcium that mimic transition metal compounds. The molecule is the first example of a heteronuclear carbonyl complex featuring a d-d bond between calcium and a transition metal.

4.
Angew Chem Int Ed Engl ; 60(36): 19949-19956, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34128303

RESUMEN

Carbodicarbene (CDC), unique carbenic entities bearing two lone pairs of electrons are well-known for their strong Lewis basicity. We demonstrate herein, upon introducing a weak Brønsted acid benzyl alcohol (BnOH) as a co-modulator, CDC is remolded into a Frustrated Lewis Pair (FLP)-like reactivity. DFT calculation and experimental evidence show BnOH loosely interacting with the binding pocket of CDC via H-bonding and π-π stacking. Four distinct reactions in nature were deployed to demonstrate the viability of proof-of-concept as synergistic FLP/Modulator (CDC/BnOH), demonstrating enhanced catalytic reactivity in cyclotrimerization of isocyanate, polymerization process for L-lactide (LA), methyl methacrylate (MMA) and dehydrosilylation of alcohols. Importantly, the catalytic reactivity of carbodicarbene is uniquely distinct from conventional NHC which relies on only single chemical feature of nucleophilicity. This finding also provides a new spin in diversifying FLP reactivity with co-modulator or co-catalyst.

5.
Anal Sci ; 37(6): 897-903, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-33132231

RESUMEN

Nanoelectrospray ionization (nESI) mass spectrometry (MS) is an ideal detection method for microfluidic chips, and its performances depend on nESI emitters. However, the fabrication of monolithic nESI emitters in chips was difficult. Herein, we propose a three-dimensional (3D) printing method to develop a microfluidic nanoelectrospray ionization source (NIS), composed of a nESI emitter and other components. Firstly, the NIS was compatible with a 50 - 500 nL min-1 nanoflows by imposing 3D hydrodynamic focusing to compensate for the total flow rate, achieving a 7.2% best relative standard deviation in the total ion current (TIC) profiles. Additionally, it was applied to probe thirteen organic chemicals, insulin, and lysozyme with adequate signal-to-noise ratios and an accuracy of m/z between 9.02 × 10-1 and 1.48 × 103 ppm. Finally, the NIS achieved comparable limits of detection compared with its commercial counterpart. Considering the standardized preparation of NIS, it would be a potential option to develop 3D-printed customized Chip-MS platforms.

6.
Dalton Trans ; 50(4): 1233-1238, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33459329

RESUMEN

Density functional theory (DFT) calculations have been performed to gain insights into the catalytic mechanism of the palladium/Lewis acid-catalyzed transfer hydrocyanation of terminal alkenes to reach the linear alkyl nitrile with excellent anti-Markovnikov selectivity. The study reveals that the whole catalysis can be characterized via three stages: (i) oxidative addition generates the π-allyl complex IM2, followed by ß-hydride elimination leading to the intermediate IM4, (ii) ligand exchange followed by Pd-H migratory alkene insertion gives the anti-Markovnikov intermediate IM6 and (iii) IM6 undergoes a reductive elimination step to form the linear terminal nitrile 3a and regenerates the active species for the next catalytic cycle. Each stage is kinetically and thermodynamically feasible. The oxidative addition step, with a barrier of 30.9 kcal mol-1, should be the rate-determining step (RDS) in the whole catalysis, which agrees with the experimental high temperature of 110 °C. Furthermore, the origin of the high regioselectivity of the product with excellent anti-Markovnikov selectivity is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA