Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Chem Rev ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967551

RESUMEN

Anthropogenic activities related to population growth, economic development, technological advances, and changes in lifestyle and climate patterns result in a continuous increase in energy consumption. At the same time, the rare metal elements frequently deployed as catalysts in energy related processes are not only costly in view of their low natural abundance, but their availability is often further limited due to geopolitical reasons. Thus, electrochemical energy storage and conversion with earth-abundant metals, mainly in the form of single-atom catalysts (SACs), are highly relevant and timely technologies. In this review the application of earth-abundant SACs in electrochemical energy storage and electrocatalytic conversion of chemicals to fuels or products with high energy content is discussed. The oxygen reduction reaction is also appraised, which is primarily harnessed in fuel cell technologies and metal-air batteries. The coordination, active sites, and mechanistic aspects of transition metal SACs are analyzed for two-electron and four-electron reaction pathways. Further, the electrochemical water splitting with SACs toward green hydrogen fuel is discussed in terms of not only hydrogen evolution reaction but also oxygen evolution reaction. Similarly, the production of ammonia as a clean fuel via electrocatalytic nitrogen reduction reaction is portrayed, highlighting the potential of earth-abundant single metal species.

2.
Small ; 19(32): e2206587, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37038085

RESUMEN

Photoactivation of aspartic acid-based carbon dots (Asp-CDs) induces the generation of spin-separated species, including electron/hole (e- /h+ ) polarons and spin-coupled triplet states, as uniquely confirmed by the light-induced electron paramagnetic resonance spectroscopy. The relative population of the e- /h+ pairs and triplet species depends on the solvent polarity, featuring a substantial stabilization of the triplet state in a non-polar environment (benzene). The electronic properties of the photoexcited Asp-CDs emerge from their spatial organization being interpreted as multi-layer assemblies containing a hydrophobic carbonaceous core and a hydrophilic oxygen and nitrogen functionalized surface. The system properties are dissected theoretically by density functional theory in combination with molecular dynamics simulations on quasi-spherical assemblies of size-variant flakelike model systems, revealing the importance of size dependence and interlayer effects. The formation of the spin-separated states in Asp-CDs enables the photoproduction of hydrogen peroxide (H2 O2 ) from water and water/2-propanol mixture via a water oxidation reaction.

3.
Small ; 19(51): e2207216, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36703534

RESUMEN

Tackling the current problem of antimicrobial resistance (AMR) requires fast, inexpensive, and effective methods for controlling and detecting antibiotics in diverse samples at the point of interest. Cost-effective, disposable, point-of-care electrochemical biosensors are a particularly attractive option. However, there is a need for conductive and versatile carbon-based materials and inks that enable effective bioconjugation under mild conditions for the development of robust, sensitive, and selective devices. This work describes a simple and fast methodology to construct an aptasensor based on a novel graphene derivative equipped with alkyne groups prepared via fluorographene chemistry. Using click chemistry, an aptamer is immobilized and used as a successful platform for the selective determination of ampicillin in real samples in the presence of interfering molecules. The electrochemical aptasensor displayed a detection limit of 1.36 nM, high selectivity among other antibiotics, the storage stability of 4 weeks, and is effective in real samples. Additionally, structural and docking simulations of the aptamer shed light on the ampicillin binding mechanism. The versatility of this platform opens up wide possibilities for constructing a new class of aptasensor based on disposable screen-printed carbon electrodes usable in point-of-care devices.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Grafito , Grafito/química , Química Clic , Alquinos , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Carbono/química , Técnicas Biosensibles/métodos , Electrodos , Oro/química , Ampicilina , Antibacterianos , Límite de Detección
4.
Small ; 18(33): e2201003, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35775954

RESUMEN

Access to clean water for drinking, sanitation, and irrigation is a major sustainable development goal of the United Nations. Thus, technologies for cleaning water and quality-monitoring must become widely accessible and of low-cost, while being effective, selective, sustainable, and eco-friendly. To meet this challenge, hetero-bifunctional nanographene fluorescent beacons with high-affinity pockets for heavy metals are developed, offering top-rated and selective adsorption for cadmium and lead, reaching 870 and 450 mg g-1 , respectively. The heterobifunctional and multidentate pockets also operate as selective gates for fluorescence signal regulation with sub-nanomolar sensitivity (0.1 and 0.2 nm for Pb2+ and Cd2+ , respectively), due to binding affinities as low as those of antigen-antibody interactions. Importantly, the acid-proof nanographenes can be fully regenerated and reused. Their broad visible-light absorption offers an additional mode for water-quality monitoring based on ultra-low cost and user-friendly reagentless paper detection with the naked-eye at a limit of detection of 1 and 10 ppb for Pb2+ and Cd2+ ions, respectively. This work shows that photoactive nanomaterials, densely-functionalized with strong, yet selective ligands for targeted contaminants, can successfully combine features such as excellent adsorption, reusability, and sensing capabilities, in a way to extend the material's applicability, its life-cycle, and value-for-money.


Asunto(s)
Grafito , Metales Pesados , Adsorción , Cadmio , Descontaminación , Plomo , Agua
5.
J Am Chem Soc ; 143(29): 10930-10939, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34266233

RESUMEN

A combined computational and experimental study reveals the character of the C60 complexes with piperidine formed under different reaction conditions. The IR and NMR experiments detect the dative bond complex, which according to NMR, is stable in the oxygen-free environment and transforms to the adduct complex in the presence of O2. Computational studies on the character of reaction channels rationalize the experimental observations. They show that the piperidine dimer rather than a single piperidine molecule is required for the complex formation. The calculations reveal significant differences in the dative bond and adduct complexes' character, suggesting a considerable versatility in their electronic properties modulated by the environment. This capability offers new application potential in several fields, such as in energy storage devices.

6.
Small ; 17(16): e2006477, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33783134

RESUMEN

Single-atom catalysts (SACs) have aroused great attention due to their high atom efficiency and unprecedented catalytic properties. A remaining challenge is to anchor the single atoms individually on support materials via strong interactions. Herein, single atom Co sites have been developed on functionalized graphene by taking advantage of the strong interaction between Co2+ ions and the nitrile group of cyanographene. The potential of the material, which is named G(CN)Co, as a SAC is demonstrated using the electrocatalytic hydrazine oxidation reaction (HzOR). The material exhibits excellent catalytic activity for HzOR, driving the reaction with low overpotential and high current density while remaining stable during long reaction times. Thus, this material can be a promising alternative to conventional noble metal-based catalysts that are currently widely used in HzOR-based fuel cells. Density functional theory calculations of the reaction mechanism over the material reveal that the Co(II) sites on G(CN)Co can efficiently interact with hydrazine molecules and promote the NH bond-dissociation steps involved in the HzOR.

7.
Phys Chem Chem Phys ; 23(7): 4365-4375, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33589890

RESUMEN

The combined experimental-computational study has been performed to investigate the complexes formed between C70 carbon allotrope and piperidine. The results of FT-IR, H-NMR, and C-NMR measurements, together with the calculations based on the DFT approach and molecular dynamics simulations, prove the existence of dative/covalent bonding in C70piperidine complexes. The dative bond forms not only at the region of five- and six-membered rings, observed previously with C60, but also at the region formed of six-membered rings. The structure, i.e., nonplanarity, explains the observed dative bond formation. New findings on the character of interaction of secondary amines with C70 bring new aspects for the rational design of modified fullerenes and their applications in electrocatalysis, spintronics, and energy storage.

8.
Molecules ; 26(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805728

RESUMEN

Hypergolic systems rely on organic fuel and a powerful oxidizer that spontaneously ignites upon contact without any external ignition source. Although their main utilization pertains to rocket fuels and propellants, it is only recently that hypergolics has been established from our group as a new general method for the synthesis of different morphologies of carbon nanostructures depending on the hypergolic pair (organic fuel-oxidizer). In search of new pairs, the hypergolic mixture described here contains polyaniline as the organic source of carbon and fuming nitric acid as strong oxidizer. Specifically, the two reagents react rapidly and spontaneously upon contact at ambient conditions to afford carbon nanosheets. Further liquid-phase exfoliation of the nanosheets in dimethylformamide results in dispersed single layers exhibiting strong Tyndall effect. The method can be extended to other conductive polymers, such as polythiophene and polypyrrole, leading to the formation of different type carbon nanostructures (e.g., photolumincent carbon dots). Apart from being a new synthesis pathway towards carbon nanomaterials and a new type of reaction for conductive polymers, the present hypergolic pairs also provide a novel set of rocket bipropellants based on conductive polymers.

9.
Angew Chem Int Ed Engl ; 60(4): 1942-1950, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33022841

RESUMEN

The complexes formed between carbon allotropes (C20 , C60 fullerenes, graphene, and single-wall carbon nanotubes) and piperidine have been investigated by means of computational quantum chemical and experimental IR and NMR techniques. Alongside hydrogen bonds, the C⋅⋅⋅N tetrel bond, and lone-pair⋅⋅⋅π interactions, the unexpected N→C dative/covalent bond has been detected solely in complexes of fullerenes with piperidine. Non-planarity and five-member rings of carbon allotropes represent the key structural prerequisites for the unique formation of a dative N→C bond. The results of thermodynamics calculations, molecular dynamics simulations, and NMR and FTIR spectroscopy explain the specific interactions between C60 and piperidine. The differences in behavior of individual carbon allotropes in terms of dative bonding formation brings a new insight into their controllable organic functionalization.

10.
Chem Rev ; 116(9): 5338-431, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27109701

RESUMEN

Targeted delivery combined with controlled drug release has a pivotal role in the future of personalized medicine. This review covers the principles, advantages, and drawbacks of passive and active targeting based on various polymer and magnetic iron oxide nanoparticle carriers with drug attached by both covalent and noncovalent pathways. Attention is devoted to the tailored conjugation of targeting ligands (e.g., enzymes, antibodies, peptides) to drug carrier systems. Similarly, the approaches toward controlled drug release are discussed. Various polymer-drug conjugates based, for example, on polyethylene glycol (PEG), N-(2-hydroxypropyl)methacrylamide (HPMA), polymeric micelles, and nanoparticle carriers are explored with respect to absorption, distribution, metabolism, and excretion (ADME scheme) of administrated drug. Design and structure of superparamagnetic iron oxide nanoparticles (SPION) and condensed magnetic clusters are classified according to the mechanism of noncovalent drug loading involving hydrophobic and electrostatic interactions, coordination chemistry, and encapsulation in porous materials. Principles of covalent conjugation of drugs with SPIONs including thermo- and pH-degradable bonds, amide linkage, redox-cleavable bonds, and enzymatically-cleavable bonds are also thoroughly described. Finally, results of clinical trials obtained with polymeric and magnetic carriers are analyzed highlighting the potential advantages and future directions in targeted anticancer therapy.


Asunto(s)
Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Nanopartículas de Magnetita/química , Polímeros/química , Portadores de Fármacos/química , Concentración de Iones de Hidrógeno , Ligandos , Porosidad , Propiedades de Superficie
11.
AAPS PharmSciTech ; 19(2): 621-633, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28924948

RESUMEN

In solid tumors, hypoxia (lack of oxygen) is developed, which leads to the development of resistance of tumor cells to chemotherapy and radiotherapy through various mechanisms. Nevertheless, hypoxic cells are particularly vulnerable when glycolysis is inhibited. For this reason, in this study, the development of magnetically targetable nanocarriers of the sodium-glucose transporter protein (SGLT2) inhibitor dapagliflozin (DAPA) was developed for the selective delivery of DAPA in tumors. This nanomedicine in combination with radiotherapy or chemotherapy should be useful for effective treatment of hypoxic tumors. The magnetic nanoparticles consisted of a magnetic iron oxide core and a poly(methacrylic acid)-graft-poly(ethyleneglycol methacrylate) (PMAA-g-PEGMA) polymeric shell. The drug (dapagliflozin) molecules were conjugated on the surface of these nanoparticles via in vivo hydrolysable ester bonds. The nanoparticles had an average size of ~ 70 nm and exhibited a DAPA loading capacity 10.75% (w/w) for a theoretical loading 21.68% (w/w). The magnetic responsiveness of the nanoparticles was confirmed with magnetophoresis experiments. The dapagliflozin-loaded magnetic nanoparticles exhibited excellent colloidal stability in aqueous and biological media. Minimal (less than 15% in 24 h) drug release from the nanoparticles occurred in physiological pH 7.4; however, drug release was significantly accelerated in pH 5.5. Drug release was also accelerated (triggered) under the influence of an alternating magnetic field. The DAPA-loaded nanoparticles exhibited higher in vitro anticancer activity (cytotoxicity) against A549 human lung cancer cells than free DAPA. The application of an external magnetic field gradient increased the uptake of nanoparticles by cells, leading to increased cytotoxicity. The results justify further in vivo studies of the suitability of DAPA-loaded magnetic nanoparticles for the treatment of hypoxic tumors.


Asunto(s)
Compuestos de Bencidrilo/administración & dosificación , Compuestos de Bencidrilo/química , Sistemas de Liberación de Medicamentos/métodos , Glucósidos/administración & dosificación , Glucósidos/química , Nanopartículas de Magnetita/administración & dosificación , Nanopartículas de Magnetita/química , Hipoxia Tumoral/efectos de los fármacos , Células A549 , Línea Celular Tumoral , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Liberación de Fármacos , Humanos , Nanomedicina/métodos , Transportador 2 de Sodio-Glucosa , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Hipoxia Tumoral/fisiología
12.
AAPS PharmSciTech ; 18(3): 769-781, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27301873

RESUMEN

Paclitaxel (PTX) and organophilic iron oxide nanocrystals of 7 nm average size were co-encapsulated in the oily core of poly(lactide)-poly(ethyleneglycol) (PLA-PEG) nanocapsules in order to develop magnetically responsive nanocarriers of PTX. The nanocapsules were prepared by a solvent displacement technique and exhibited satisfactory drug and iron oxide loading efficiency, high colloidal stability, and sustained drug release properties. Drug release also proved responsive to an alternating magnetic field. Magnetophoresis experiments showed that the magnetic responsiveness of the nanocapsules depended on their SPION content. The PTX-loaded nanocapsules exhibited comparable to free PTX cytotoxicity against the A549 lung cancer cell line at 24 h of incubation but higher cytotoxicity than free drug at 48 h of incubation. The conjugation of a cysteine-modified TAT peptide (HCys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-NH2) on the surface of the nanocapsules resulted to highly increased uptake of nanocapsules by cancer cells, as well as to profound improvement of their cytotoxicity against the cancer cells. The results obtained justify further investigation of the prospects of these multifunctional PLA-PEG nanocapsules as a targeted delivery system of paclitaxel.


Asunto(s)
Nanocápsulas/química , Paclitaxel/administración & dosificación , Paclitaxel/química , Fragmentos de Péptidos/química , Poliésteres/química , Polietilenglicoles/química , Células A549 , Línea Celular Tumoral , Preparaciones de Acción Retardada/administración & dosificación , Liberación de Fármacos/efectos de los fármacos , Humanos , Nanopartículas/administración & dosificación , Nanopartículas/química
13.
Chemistry ; 22(28): 9750-9, 2016 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-27246144

RESUMEN

The fabrication of nanoparticles using different formulations, and which can be used for the delivery of chemotherapeutics, has recently attracted considerable attention. We describe herein an innovative approach that may ultimately allow for the selective delivery of anticancer drugs to tumor cells by using an external magnet. A conventional antitumor drug, cisplatin, has been incorporated into new carboxymethylcellulose-stabilized magnetite nanoparticles conjugated with the fluorescent marker Alexa Fluor 488 or folic acid as targeting agent. The magnetic nanocarriers possess exceptionally high biocompatibility and colloidal stability. These cisplatin-loaded nanoparticles overcome the resistance mechanisms typical of free cisplatin. Moreover, experiments aimed at the localization of the nanoparticles driven by an external magnet in a medium that mimics physiological conditions confirmed that this localization can inhibit tumor cell growth site-specifically.


Asunto(s)
Antineoplásicos/administración & dosificación , Carboximetilcelulosa de Sodio/química , Cisplatino/química , Cisplatino/farmacología , Ácido Fólico/química , Nanopartículas de Magnetita/química , Platino (Metal)/química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Carboximetilcelulosa de Sodio/farmacocinética , Línea Celular Tumoral , Cisplatino/administración & dosificación , Cisplatino/farmacocinética , Sistemas de Liberación de Medicamentos , Humanos
14.
Green Chem ; 25(4): 1647-1657, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36824602

RESUMEN

Heavy metal pollutants are of great concern to environmental monitoring due to their potent toxicity. Electrochemical detection, one of the main techniques, is hindered by the mutual interferences of various heavy metal ions in practical use. In particular, the sensitivity of carbon electrodes to Cd2+ ions (one of the most toxic heavy metals) is often overshadowed by some heavy metals (e.g. Pb2+ and Cu2+). To mitigate interference, metallic particles/films (e.g. Hg, Au, Bi, and Sn) typically need to be embedded in the carbon electrodes. However, these additional metallic materials may face issues of secondary pollution and unsustainability. In this study, a metal-free and sustainable nanomaterial, namely cysteamine covalently functionalized graphene (GSH), was found to lead to a 6-fold boost in the Cd2+ sensitivity of the screen-printed carbon electrode (SPCE), while the sensitivities to Pb2+ and Cu2+ were not influenced in simultaneous detection. The selective enhancement could be attributed to the grafted thiols on GSH sheets with good affinity to Cd2+ ions based on Pearson's hard and soft acid and base principle. More intriguingly, the GSH-modified SPCE (GSH-SPCE) featured high reusability with extended cycling times (23 times), surpassing the state-of-art SPCEs modified by non-covalently functionalized graphene derivatives. Last, the GSH-SPCE was validated in tap water.

15.
Nat Commun ; 14(1): 1373, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914639

RESUMEN

Our dependence on finite fossil fuels and the insecure energy supply chains have stimulated intensive research for sustainable technologies. Upcycling glycerol, produced from biomass fermentation and as a biodiesel formation byproduct, can substantially contribute in circular carbon economy. Here, we report glycerol's solvent-free and room-temperature conversion to high-added-value chemicals via a reusable graphene catalyst (G-ASA), functionalized with a natural amino acid (taurine). Theoretical studies unveil that the superior performance of the catalyst (surpassing even homogeneous, industrial catalysts) is associated with the dual role of the covalently linked taurine, boosting the catalyst's acidity and affinity for the reactants. Unlike previous catalysts, G-ASA exhibits excellent activity (7508 mmol g-1 h-1) and selectivity (99.9%) for glycerol conversion to solketal, an additive for improving fuels' quality and a precursor of commodity and fine chemicals. Notably, the catalyst is also particularly active in converting oils to biodiesel, demonstrating its general applicability.

16.
ACS Catal ; 13(24): 16067-16077, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38125981

RESUMEN

A strategy for the synthesis of a gold-based single-atom catalyst (SAC) via a one-step room temperature reduction of Au(III) salt and stabilization of Au(I) ions on nitrile-functionalized graphene (cyanographene; G-CN) is described. The graphene-supported G(CN)-Au catalyst exhibits a unique linear structure of the Au(I) active sites promoting a multistep mode of action in dehydrogenative coupling of organosilanes with alcohols under mild reaction conditions as proven by advanced XPS, XAFS, XANES, and EPR techniques along with DFT calculations. The linear structure being perfectly accessible toward the reactant molecules and the cyanographene-induced charge transfer resulting in the exclusive Au(I) valence state contribute to the superior efficiency of the emerging two-dimensional SAC. The developed G(CN)-Au SAC, despite its low metal loading (ca. 0.6 wt %), appear to be the most efficient catalyst for Si-H bond activation with a turnover frequency of up to 139,494 h-1 and high selectivities, significantly overcoming all reported homogeneous gold catalysts. Moreover, it can be easily prepared in a multigram batch scale, is recyclable, and works well toward more than 40 organosilanes. This work opens the door for applications of SACs with a linear structure of the active site for advanced catalytic applications.

17.
Small ; 8(15): 2381-93, 2012 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-22549909

RESUMEN

Hybrid magnetic drug nanocarriers are prepared via a self-assembly process of poly(methacrylic acid)-graft-poly(ethyleneglycol methacrylate) (p(MAA-g-EGMA)) on growing iron oxide nanocrystallites. The nanocarriers successfully merge together bio-repellent properties, pronounced magnetic response, and high loading capacity for the potent anticancer drug doxorubicin (adriamicin), in a manner not observed before in such hybrid colloids. High magnetic responses are accomplished by engineering the size of the magnetic nanocrystallites (∼13.5 nm) following an aqueous single-ferrous precursor route, and through adjustment of the number of cores in each colloidal assembly. Complementing conventional magnetometry, the magnetic response of the nanocarriers is evaluated by magnetophoretic experiments providing insight into their internal organization and on their response to magnetic manipulation. The structural organization of the graft-copolymer, locked on the surface of the nanocrystallites, is further probed by small-angle neutron scattering on single-core colloids. Analysis showed that the MAA segments selectively populate the area around the magnetic nanocrystallites, while the poly(ethylene glycol)-grafted chains are arranged as protrusions, pointing towards the aqueous environment. These nanocarriers are screened at various pHs and in highly salted media by light scattering and electrokinetic measurements. According to the results, their stability is dramatically enhanced, as compared to uncoated nanocrystallites, owing to the presence of the external protective PEG canopy. The nanocarriers are also endowed with bio-repellent properties, as evidenced by stability assays using human blood plasma as the medium.


Asunto(s)
Doxorrubicina/administración & dosificación , Portadores de Fármacos/química , Magnetismo , Doxorrubicina/química , Microscopía Electrónica de Transmisión , Nanopartículas/química , Polietilenglicoles/química , Termogravimetría
18.
Nanomaterials (Basel) ; 12(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36014605

RESUMEN

Since the groundbreaking discovery of graphene by Geim and Novoselov in 2004, there has been continuous research focused on the utilization of graphene (GR) and graphene-related materials (GRms) in technologically high-impact applications, spanning from electronics, sensing, and spintronics, to catalysis, energy storage, and environmental remediation [...].

19.
Energy Environ Sci ; 15(2): 740-748, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35308297

RESUMEN

Supercapacitors have attracted great interest because of their fast, reversible operation and sustainability. However, their energy densities remain lower than those of batteries. In the last decade, supercapacitors with an energy content of ∼110 W h L-1 at a power of ∼1 kW L-1 were developed by leveraging the open framework structure of graphene-related architectures. Here, we report that the reaction of fluorographene with azide anions enables the preparation of a material combining graphene-type sp2 layers with tetrahedral carbon-carbon bonds and nitrogen (pyridinic and pyrrolic) superdoping (16%). Theoretical investigations showed that the C-C bonds develop between carbon-centered radicals, which emerge in the vicinity of the nitrogen dopants. This material, with diamond-like bonds and an ultra-high mass density of 2.8 g cm-3, is an excellent host for the ions, delivering unprecedented energy densities of 200 W h L-1 at a power of 2.6 kW L-1 and 143 W h L-1 at 52 kW L-1. These findings open a route to materials whose properties may enable a transformative improvement in the performance of supercapacitor components.

20.
Nat Nanotechnol ; 17(5): 485-492, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35347273

RESUMEN

Reduction of nitroaromatics to the corresponding amines is a key process in the fine and bulk chemicals industry to produce polymers, pharmaceuticals, agrochemicals and dyes. However, their effective and selective reduction requires high temperatures and pressurized hydrogen and involves noble metal-based catalysts. Here we report on an earth-abundant, plasmonic nano-photocatalyst, with an excellent reaction rate towards the selective hydrogenation of nitroaromatics. With solar light as the only energy input, the chalcopyrite catalyst operates through the combined action of hot holes and photothermal effects. Ultrafast laser transient absorption and light-induced electron paramagnetic resonance spectroscopies have unveiled the energy matching of the hot holes in the valence band of the catalyst with the frontier orbitals of the hydrogen and electron donor, via a transient coordination intermediate. Consequently, the reusable and sustainable copper-iron-sulfide (CuFeS2) catalyst delivers previously unattainable turnover frequencies, even in large-scale reactions, while the cost-normalized production rate stands an order of magnitude above the state of the art.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA