RESUMEN
A priori, early exposure to a wide range of bacteria, viruses, and parasites appears to fortify and regulate the immune system, potentially reducing the risk of autoimmune diseases. However, improving hygiene conditions in numerous societies has led to a reduction in these microbial exposures, which, according to certain theories, could contribute to an increase in autoimmune diseases. Indeed, molecular mimicry is a key factor triggering immune system reactions; while it seeks pathogens, it can bind to self-molecules, leading to autoimmune diseases associated with microbial infections. On the other hand, a hygiene-based approach aimed at reducing the load of infectious agents through better personal hygiene can be beneficial for such pathologies. This review sheds light on how the evolution of the innate immune system, following the evolution of molecular patterns associated with microbes, contributes to our protection but may also trigger autoimmune diseases linked to microbes. Furthermore, it addresses how hygiene conditions shield us against autoimmune diseases related to microbes but may lead to autoimmune pathologies not associated with microbes.
Asunto(s)
Enfermedades Autoinmunes , Enfermedades Transmisibles , Inmunidad Innata , Enfermedades Autoinmunes/inmunología , Humanos , Enfermedades Transmisibles/inmunología , Imitación Molecular , Animales , HigieneRESUMEN
Bioactive phytochemicals act as important factors with preventive and therapeutic potential in the pathogenesis of several disorders, often related to oxidative stress. Many dietary plant secondary metabolites could lower these conditions. Sorbifolin is one of these metabolites. This work is the first review of sorbifolin, a flavone detected in various plant matrices as a major compound. The present study discussed the natural sources, extraction, purification, quantification, and assessment of the biological activities of sorbifolin. Several databases including Google Scholar, Web of Sciences, and Science-Direct were consulted for relevant English articles related to sorbifolin, the phytochemical profiles of several medicinal plants containing this compound, and its biological activities, such as antioxidant, anticancer, antimicrobial, anti-inflammatory, and antidiabetic. The positive in vitro and in silico outcomes reported in the literature should be followed by additional in vivo and clinical investigations to further research the mechanisms of action, pharmacokinetic/pharmacodynamic activities, toxicological effects, pharmacological properties, and therapeutic potential of sorbifolin.
RESUMEN
This research aimed to evaluate the antidiabetic, dermatoprotective, and antibacterial activities of Mentha viridis L. essential oil (MVEO) collected in the province of Ouezzane (Northwest Morocco). Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the main constituents of MVEO were carvone (37.26 %), 1,8-cineole (11.82 %), limonene (5.27 %), α-terpineol (4.16 %), and ß-caryophyllene (4.04 %). MVEO showed strong inhibitory effects on α-amylase and α-glucosidase activities, exceeding those of acarbose, but weak anti-elastase activity. The main compounds, ß-caryophyllene (IC50=79.91±2.24 and 62.08±2.78â µg/mL) and limonene (IC50=90.73±3.47 and 68.98±1, 60â µg/mL), demonstrated the strongest inhibitory effects on both digestive enzymes (α-glucosidase and α-amylase, respectively). In silico investigations, using molecular docking, also showed the inhibitory potential of these bioactive compounds against the enzymes tested. In conclusion, MVEO, due to its main components such as limonene, 1,8-cineole, ß-caryophyllene, carvone, and α-terpineol, shows promising prospects for drug discovery and natural therapeutic applications.
Asunto(s)
Antibacterianos , Mentha , Monoterpenos , Aceites Volátiles , alfa-Amilasas , alfa-Glucosidasas , Aceites Volátiles/farmacología , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Mentha/química , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , alfa-Glucosidasas/metabolismo , Monoterpenos/farmacología , Monoterpenos/química , Monoterpenos/aislamiento & purificación , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Simulación del Acoplamiento Molecular , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Cromatografía de Gases y Espectrometría de MasasRESUMEN
The field of nutrigenomics studies the interaction between nutrition and genetics, and how certain dietary patterns can impact gene expression and overall health. The Mediterranean diet (MedDiet), characterized by a high intake of fruits, vegetables, whole grains, and healthy fats, has been linked to better cardiovascular health (CVH) outcomes. This review summarizes the current state of research on the effects of nutrigenomics and MedDiet on cardiovascular health. Results suggest that MedDiet, through its impact on gene expression, can positively influence CVH markers such as blood pressure, lipid profile, and inflammation. However, more research is needed to fully understand the complex interactions between genetics, nutrition, and CVH, and to determine the optimal dietary patterns for individualized care. The aim of this scientific review is to evaluate the current evidence on the effects of nutrigenomics and MedDiet on cardiovascular health. The review summarizes the available studies that have investigated the relationship between nutrition, genetics, and cardiovascular health, and explores the mechanisms by which certain dietary patterns can impact CVH outcomes. The review focuses on the effects of MedDiet, a dietary pattern that is rich in whole foods and healthy fats, and its potential to positively influence CVH through its impact on gene expression. The review highlights the limitations of current research and the need for further studies to fully understand the complex interplay between nutrition, genetics, and cardiovascular health.
RESUMEN
For persons who survive with progressive cancer, nutritional therapy and exercise may be significant factors to improve the health condition and life quality of cancer patients. Nutritional therapy and medications are essential to managing progressive cancer. Cancer survivors, as well as cancer patients, are mostly extremely encouraged to search for knowledge about the selection of diet, exercise, and dietary supplements to recover as well as maintain their treatment consequences, living quality, and survival of patients. A healthy diet plays an important role in cancer treatment. Different articles are studied to collect information and knowledge about the use of nutrients in cancer treatment as well as cancer prevention. The report deliberates nutrition and exercise strategies during the range of cancer care, emphasizing significant concerns during treatment of cancer and for patients of advanced cancer, but concentrating mostly on the requirements of the population of persons who are healthy or who have constant disease following their repossession from management. It also deliberates choice nutrition and exercise problems such as dietary supplements, food care, food selections, and weight; problems interrelated to designated cancer sites, and common questions about diet, and cancer survival. Decrease the side effects of medicines both during and after treatment.
Asunto(s)
Dieta , Neoplasias , Humanos , Suplementos Dietéticos , Estado Nutricional , Ejercicio Físico , Apoyo Nutricional , Neoplasias/terapiaRESUMEN
BACKGROUND: The hemogram is the most frequently prescribed laboratory test. It guides the complementary tests essential to the diagnosis and follow-up of the patient. Hematology reference values can be influenced by several parameters such as environmental and genetic factors, rendering it essential to define reference intervals (RIs) for specific populations. This study aimed to determine RIs from a population of healthy adults in Al Hoceima province by following the procedures recommended by the IFCC-CLSI guidelines in 2008 and comparing them to those of similar studies conducted in various countries. METHODS: We initially recruited 977 healthy adults from 18 to 60 years old including 255 men and 722 women, who presented themselves at the provincial hospital center of Al Hoceima (Morocco) for health checkups from February 2019 to September 2019. The erythrocyte, leukocyte, and platelet parameters were investigated using hematology analyzer ABX Pentra XL80 HORIBA® (HORIBA ABX SAS, Kyoto, Japan). RESULTS: The results showed that the RIs of the blood count parameters searched were more or less close to the RIs determined in Caucasian populations. Nevertheless, they were low compared to the limits of the RIs published in the literature for certain erythrocyte and platelet parameters. Our RIs were also similar in their majority, except for some parameters, to the RIs published very recently in a study conducted on a Moroccan population in the Tangier-Tetouan region. In addition, our intervals differ in their majority from those published in a study of a Ghanaian population. CONCLUSIONS: The differences reported by this preliminary work reinforce the need to establish hemogram RIs specific to the Moroccan population through more extensive studies carried out in different regions of Morocco. These studies should avoid misdiagnosis and allow physicians to interpret hematological tests more specifically.
Asunto(s)
Pruebas Hematológicas , Hematología , Masculino , Adulto , Humanos , Femenino , Adolescente , Adulto Joven , Persona de Mediana Edad , Ghana , Recuento de Células Sanguíneas , Eritrocitos , Valores de ReferenciaRESUMEN
BACKGROUND: Reference intervals (RIs) for biochemical and hematological parameters are fundamental tools for clinical diagnosis, management, and therapeutic follow-up. In Morocco, the RIs used by clinical laboratories and physicians are derived from western populations. Also, RIs of biochemical and hematological parameters specific to the various Moroccan areas are lacking. This study aimed to determine RIs for biochemical and hematological parameters in apparently healthy voluntary adults by following the procedures recommended by the IFCC-CLSI guidelines in 2008 and comparing them to those of literature and other countries. METHODS: A total of 768 healthy adults from 18 to 60 years old were recruited. Complete blood count and biochemical analyses were performed using hematology analyzer Sysmex KX21N® (Sysmex Corporation, Kobe, Japan) and COBAS INTEGRA®400 plus biochemistry analyzer (Roche, Diagnostics GmbH, Germany) at the laboratory of the hospital Mohamed VI of M'diq, Morocco, and went into effect between November 2017 and December 2020. The data analysis was made by the software SPSS 20.0 and RIs have been established by using the 2.5th and 97.5th percentiles. RESULTS: RIs established include: glucose 3.90 - 6.76 mmol/L for males and 4.01 - 6.87 mmol/L for females; alanine aminotransferase 5.60 - 40.07 U/L for males and 5.60 - 38.71 U/L for females; aspartate aminotransferase 5.60 - 40.08 for males and 5.89 - 39.90 U/L for females; creatinine 47.73 - 113.15 µmol/L for males and 44.64 - 102.28 µmol/L for females; urea 2.2 - 7.6 mmol/L for males and 1.90 - 7.5 mmol/L for females; total cholesterol 2.71 - 5.46 mmol/L for males and 2.64 - 5.89 mmol/L for females; triglycerides 0.58 - 2.01 mmol/L for males and 0.55 - 2.08 mmol/L for females; high-density lipoprotein cholesterol 1.40 - 1.50 mmol/L for males and 1.40 - 1.65 mmol/L for females; and uric acid 157.3 - 410.8 µmol/L for males and 146.1 - 388.5 µmol/L for females. Concerning the hematological parameters, a significant difference (p < 0.05) between both genders was noted for the majority of pa rameters. CONCLUSIONS: The present study underlines the importance to establish RIs specific to the Moroccan population in each region for a more rational and reliable interpretation of biochemical and hematological testing in order to avoid errors in diagnosis and treatment of patients.
Asunto(s)
Hematología , Masculino , Femenino , Humanos , Adulto , Adolescente , Adulto Joven , Persona de Mediana Edad , Marruecos , Valores de Referencia , Biomarcadores , Región Mediterránea , ColesterolRESUMEN
Retama monosperma L. (Boiss.) or Genista monosperma L. (Lam.), known locally as "R'tam", is a spontaneous and annual herb that belongs to the Fabaceae family. It is native to the Mediterranean regions, specifically in the desert areas and across the Middle Atlas in Morocco. This plant has been extensively used in folk medicine and it is rich in bioactive compounds, including polyphenols, flavonoids, and alkaloids. Current research efforts are focusing on the development of novel natural drugs as alternatives to various organic and non-organic chemical products from Retama monosperma. In addition, extract, and isolated compounds obtained from different parts of the chosen plant have been described to exhibit multiple biological and pharmacological properties such as antioxidant, anti-aging, anti-inflammatory, antihypertensive, anti-helminthic, disinfectant, diuretic, and hypoglycemic effects. The plant-derived extract also acts as an antimicrobial agent, which is highly efficient in the treatment of bacterial, viral, and fungal infections. Its antiproliferative effects are associated with some mechanisms, such as the inhibition of cell cycle arrest and apoptosis. In light of these assessments, we critically highlight the beneficial effects of the flowers, stems, seeds extracts, and isolated compounds from R. monosperma (L.) Boiss in human health care, industrial, and other applications, as well as the possible ways to be employed as a potential natural source for future drug discovery.
Asunto(s)
Fabaceae , Genista , Humanos , Fabaceae/química , Extractos Vegetales/química , Apoptosis , Polifenoles/farmacologíaRESUMEN
Alzheimer's disease remains one of the most widespread neurodegenerative reasons for dementia worldwide and is associated with considerable mortality and morbidity. Therefore, it has been considered a priority for research. Indeed, several risk factors are involved in the complexity of the therapeutic ways of this pathology, including age, traumatic brain injury, genetics, exposure to aluminum, infections, diabetes, vascular diseases, hypertension, dyslipidemia, and obesity. The pathophysiology of Alzheimer's disease is mostly associated with hyperphosphorylated protein in the neuronal cytoplasm and extracellular plaques of the insoluble ß-amyloid peptide. Therefore, the management of this pathology needs the screening of drugs targeting different pathological levels, such as acetylcholinesterase (AchE), amyloid ß formation, and lipoxygenase inhibitors. Among the pharmacological strategies used for the management of Alzheimer's disease, natural drugs are considered a promising therapeutic strategy. Indeed, bioactive compounds isolated from different natural sources exhibit important anti-Alzheimer effects by their effectiveness in promoting neuroplasticity and protecting against neurodegeneration as well as neuroinflammation and oxidative stress in the brain. These effects involve different sub-cellular, cellular, and/or molecular mechanisms, such as the inhibition of acetylcholinesterase (AchE), the modulation of signaling pathways, and the inhibition of oxidative stress. Moreover, some nanoparticles were recently used as phytochemical delivery systems to improve the effects of phytochemical compounds against Alzheimer's disease. Therefore, the present work aims to provide a comprehensive overview of the key advances concerning nano-drug delivery applications of phytochemicals for Alzheimer's disease management.
Asunto(s)
Enfermedad de Alzheimer , Nanopartículas , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Acetilcolinesterasa/metabolismo , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Nanopartículas/uso terapéuticoRESUMEN
This exploratory investigation aimed to determine the chemical composition and evaluate some biological properties, such as antioxidant, anti-inflammatory, antidiabetic, and antimicrobial activities, of Matricaria chamomilla L. essential oils (EOs). EOs of M. chamomilla were obtained by hydrodistillation and phytochemical screening was performed by gas chromatography-mass spectrophotometry (GC-MS). The antimicrobial activities were tested against different pathogenic strains of microorganisms by using disc diffusion assay, the minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) methods. The antidiabetic activity was performed in vitro using the enzyme inhibition test. The antioxidant activity of EOs was tested using the free radical scavenging ability (DPPH method), ferrous ion chelating (FIC) ability, and ß-carotene bleaching assay. The anti-inflammatory effects were tested in vivo using the carrageenan-induced paw edema method and in vitro using the inhibition of the lipoxygenase test. The analysis of the phytochemical composition by GC-MS revealed that camphor (16.42%) was the major compound of EOs, followed by 3-carene (9.95%), ß-myrcene (8.01%), and chamazulene (6.54%). MCEO, honey, and their mixture exhibited antioxidant activity against the DPPH assay (IC50 ranging from 533.89 ± 15.05 µg/mL to 1945.38 ± 12.71 µg/mL). The mixture exhibited the best radical scavenging activity, with an IC50 of 533.89 ± 15.05 µg/mL. As antidiabetic effect, EO presented the best values against α-glucosidase (265.57 ± 0.03 µg/mL) and α-amylase (121.44 ± 0.05 µg/mL). The EOs and honey mixture at a dose of 100 mg/kg exhibited a high anti-inflammatory effect, with 63.75% edema inhibition after 3 h. The impact of EOs on the studied species showed an excellent antimicrobial (Staphylococcus aureus ATCC 29213 (22.97 ± 0.16 mm)), antifungal (Aspergillus niger (18.13 ± 0.18 mm)) and anti-yeast (Candida albicans (21.07 ± 0.24 mm) effect against all the tested strains. The results obtained indicate that the EOs of M. chamomilla could be a potential drug target against diabetes, inflammation and microbial infections; however, further investigations to assess their bioactive molecules individually and in combination are greatly required.
Asunto(s)
Antiinfecciosos , Miel , Matricaria , Aceites Volátiles , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antifúngicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Alcanfor , Carragenina , Radicales Libres , Hipoglucemiantes , Lipooxigenasas , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química , Aceites Volátiles/farmacología , Fitoquímicos/farmacología , alfa-Amilasas , alfa-Glucosidasas , beta CarotenoRESUMEN
The purposes of this investigatory study were to determine the chemical composition of the essential oils (EOs) of Origanum compactum from two Moroccan regions (Boulemane and Taounate), as well as the evaluation of their biological effects. Determining EOs' chemical composition was performed by a gas chromatography-mass spectrophotometer (GC-MS). The antioxidant activity of EOs was evaluated using free radical scavenging ability (DPPH method), fluorescence recovery after photobleaching (FRAP), and lipid peroxidation inhibition assays. The anti-inflammatory effect was assessed in vitro using the 5-lipoxygenase (5-LOX) inhibition test and in vivo using the carrageenan-induced paw edema model. Finally, the antibacterial effect was evaluated against several strains using the disk-diffusion assay and the micro-dilution method. The chemical constituent of O. compactum EO (OCEO) from the Boulemane zone is dominated by carvacrol (45.80%), thymol (18.86%), and α-pinene (13.43%). However, OCEO from the Taounate zone is rich in 3-carene (19.56%), thymol (12.98%), and o-cymene (11.16%). OCEO from Taounate showed higher antioxidant activity than EO from Boulemane. Nevertheless, EO from Boulemane considerably inhibited 5-LOX (IC50 = 0.68 ± 0.02 µg/mL) compared to EO from Taounate (IC50 = 1.33 ± 0.01 µg/mL). A similar result was obtained for tyrosinase inhibition with Boulemane EO and Taounate EO, which gave IC50s of 27.51 ± 0.03 µg/mL and 41.83 ± 0.01 µg/mL, respectively. The in vivo anti-inflammatory test showed promising effects; both EOs inhibit and reduce inflammation in mice. For antibacterial activity, both EOs were found to be significantly active against all strains tested in the disk-diffusion test, but O. compactum EO from the Boulemane region showed the highest activity. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) for O. compactum EO from the Boulemane region ranged from 0.06 to 0.25% (v/v) and from 0.15 to 0.21% (v/v) for O. compactum from the Taounate region. The MBC/MIC index revealed that both EOs exhibited remarkable bactericidal effects.
Asunto(s)
Aceites Volátiles , Origanum , Ratones , Animales , Origanum/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antioxidantes/farmacología , Antioxidantes/química , Timol , Antibacterianos/farmacología , Antibacterianos/química , Antiinflamatorios/farmacologíaRESUMEN
Berry-derived polyphenols are bioactive compounds synthesized and secreted by several berry fruits. These polyphenols feature a diversity of chemical compounds, including phenolic acids and flavonoids. Here, we report the beneficial health effects of berry-derived polyphenols and their therapeutical application on gut-microbiota-related diseases, including inflammation and cancer. Pharmacokinetic investigations have confirmed the absorption, availability, and metabolism of berry-derived polyphenols. In vitro and in vivo tests, as well as clinical trials, showed that berry-derived polyphenols can positively modulate the gut microbiota, inhibiting inflammation and cancer development. Indeed, these compounds inhibit the growth of pathogenic bacteria and also promote beneficial bacteria. Moreover, berry-derived polyphenols exhibit therapeutic effects against different gut-microbiota-related disorders such as inflammation, cancer, and metabolic disorders. Moreover, these polyphenols can manage the inflammation via various mechanisms, in particular the inhibition of the transcriptional factor Nf-κB. Berry-derived polyphenols have also shown remarkable effects on different types of cancer, including colorectal, breast, esophageal, and prostate cancer. Moreover, certain metabolic disorders such as diabetes and atherosclerosis were also managed by berry-derived polyphenols through different mechanisms. These data showed that polyphenols from berries are a promising source of bioactive compounds capable of modulating the intestinal microbiota, and therefore managing cancer and associated metabolic diseases. However, further investigations should be carried out to determine the mechanisms of action of berry-derived polyphenol bioactive compounds to validate their safety and examinate their clinical uses.
Asunto(s)
Microbioma Gastrointestinal , Enfermedades Metabólicas , Neoplasias , Frutas/metabolismo , Inflamación/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Polifenoles/química , Polifenoles/farmacología , Polifenoles/uso terapéuticoRESUMEN
Until recently, the main pharmaceuticals used to control cholesterol and prevent cardiovascular disease (CVD) were statin-related drugs, known for their historical side effects. Therefore, there is growing interest in exploring alternatives, such as nutritional and dietary components, that could play a central role in CVD prevention. This review aims to provide a comprehensive understanding of how natural phytosterols found in various diets combat CVDs. We begin with a description of the overall approach, then we explore in detail the different direct and indirect mechanisms that contribute to reducing cardiovascular incidents. Phytosterols, including stigmasterol, ß-sitosterol, ergosterol, and fucosterol, emerge as promising molecules within nutritional systems for protection against CVDs due to their beneficial effects at different levels through direct or indirect cellular, subcellular, and molecular mechanisms. Specifically, the mentioned phytosterols exhibit the ability to diminish the generation of various radicals, including hydroperoxides and hydrogen peroxide. They also promote the activation of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione, while inhibiting lipid peroxidation through the activation of Nrf2 and Nrf2/heme oxygenase-1 (HO-1) signaling pathways. Additionally, they demonstrate a significant inhibitory capacity in the generation of pro-inflammatory cytokines, thus playing a crucial role in regulating the inflammatory/immune response by inhibiting the expression of proteins involved in cellular signaling pathways such as JAK3/STAT3 and NF-κB. Moreover, phytosterols play a key role in reducing cholesterol absorption and improving the lipid profile. These compounds can be used as dietary supplements or included in specific diets to aid control cholesterol levels, particularly in individuals suffering from hypercholesterolemia.
RESUMEN
Today, pharmaceutical drugs have been shown to have serious side effects, while the bioactive components of botanical plants are proven to be effective in the treatment of several diseases marked by enhanced oxidative stress and mild inflammation, often associated with minimal adverse events. Coumaroyltyramine, designated by various nomenclatures such as paprazine, N-p-trans-coumaroyltyramine, p-coumaroyltyramine and N-p-coumaroyltyramine, could be a promising bioactive ingredient to address health issues thanks to its powerful anti-inflammatory and antioxidant effects. This review represents the first in-depth analysis of coumaroyltyramine, an intriguing phenylpropanoid substance found in many species of plants. In fact, an in-depth examination of coumaroyltyramine's biological characteristics, chemical attributes, and synthesis process has been undertaken. All previous research relating to the discovery, extraction, biosynthesis, and characterization of the biologically and pharmacologically active properties of coumaroyltyramine has been reviewed and taken into consideration in this analysis. All articles published in a peer-reviewed English-language journal were examined between the initial compilations of the appropriate database until February 12, 2024. A variety of phytochemicals revealed that coumaroyltyramine is a neutral amide of hydroxycinnamic acid that tends to concentrate in plants as a reaction against infection caused by pathogens and is extracted from several medicinal herbs such as Cannabis sativa, Solanum melongena, Allium bakeri, Annona cherimola, Polygonatum zanlanscianense, and Lycopersicon esculentum. Thanks to its effectiveness in suppressing the effect of the enzyme α-glucosidase, coumaroltyramine has demonstrated antihyperglycemic activity and could have an impact on diabetes and metabolic disorders. It has considerable anti-inflammatory and antioxidant effects. These results were obtained through biological and pharmacological studies in silico, in vivo, and in vitro. In addition, coumaroyltyramine has demonstrated hypocholesterolemic and neuroprotective benefits, thereby diminishing heart and vascular disease incidence and helping to prevent neurological disorders. Other interesting properties of coumaroltyramine include anticancer, antibacterial, anti-urease, antifungal, antiviral, and antidysmenorrheal activities. Targeted pathways encompass activity at different molecular levels, notably through induction of endoplasmic reticulum stress-dependent apoptosis, arrest of the cell cycle, and inhibition of the growth of cancer cells, survival, and proliferation. Although the findings from in silico, in vivo, and in vitro experiments illustrate coumaroyltyramine's properties and modes of action, further research is needed to fully exploit its therapeutic potential. To improve our understanding of the compound's pharmacodynamic effects and pharmacokinetic routes, large-scale research should first be undertaken. To determine whether coumaroyltyramine is clinically safe and effective, further studies are required in the clinical and toxicological fields. This upcoming research will be crucial to achieving the overall potency of this substance as a natural drug and in terms of its potential synergies with other drugs.
Asunto(s)
Antiinflamatorios , Antioxidantes , Fitoquímicos , Antiinflamatorios/farmacología , Fitoquímicos/farmacología , Estructura Molecular , Antioxidantes/farmacología , Humanos , Tiramina/farmacología , AnimalesRESUMEN
The regulation of gene expression is fundamental to health and life and is essentially carried out at the promoter region of the DNA of each gene. Depending on the molecular context, this region may be accessible or non-accessible (possibility of integration of RNA polymerase or not at this region). Among enzymes that control this process, DNA methyltransferase enzymes (DNMTs), are responsible for DNA demethylation at the CpG islands, particularly at the promoter regions, to regulate transcription. The aberrant activity of these enzymes, i.e. their abnormal expression or activity, can result in the repression or overactivation of gene expression. Consequently, this can generate cellular dysregulation leading to instability and tumor development. Several reports highlighted the involvement of DNMTs in human cancers. The inhibition or activation of DNMTs is a promising therapeutic approach in many human cancers. In the present work, we provide a comprehensive and critical summary of natural bioactive molecules as primary inhibitors of DNMTs in human cancers. The active compounds hold the potential to be developed as anti-cancer epidrugs targeting DNMTs.
Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Neoplasias , Humanos , ADN (Citosina-5-)-Metiltransferasas/genética , Neoplasias/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , Islas de CpG , Metilación de ADN , Epigénesis GenéticaRESUMEN
Oxidative stress results from a persistent imbalance in oxidation levels that promotes oxidants, playing a crucial role in the early and sustained phases of DNA damage and genomic and epigenetic instability, both of which are intricately linked to the development of tumors. The molecular pathways contributing to carcinogenesis in this context, particularly those related to double-strand and single-strand breaks in DNA, serve as indicators of DNA damage due to oxidation in cancer cases, as well as factors contributing to epigenetic instability through ectopic expressions. Oxidative stress has been considered a therapeutic target for many years, and an increasing number of studies have highlighted the promising effectiveness of natural products in cancer treatment. In this regard, we present significant research on the therapeutic targeting of oxidative stress using natural molecules and underscore the essential role of oxidative stress in cancer. The consequences of stress, especially epigenetic instability, also offer significant therapeutic prospects. In this context, the use of natural epi-drugs capable of modulating and reorganizing the epigenetic network is beginning to emerge remarkably. In this review, we emphasize the close connections between oxidative stress, epigenetic instability, and tumor transformation, while highlighting the role of natural substances as antioxidants and epi-drugs in the anti-tumoral context.
Asunto(s)
Antioxidantes , Transformación Celular Neoplásica , Epigénesis Genética , Neoplasias , Estrés Oxidativo , Estrés Oxidativo/efectos de los fármacos , Humanos , Epigénesis Genética/efectos de los fármacos , Antioxidantes/farmacología , Animales , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/genética , Neoplasias/metabolismo , Productos Biológicos/farmacología , Daño del ADN/efectos de los fármacosRESUMEN
Colorectal cancer (CRC) is one of the most significant forms of human cancer. It is characterized by its heterogeneity because several molecular factors are involved in contiguity and can link it to others without having a linear correlation. Among the factors influencing tumor transformation in CRC, transforming growth factor-beta (TGF-ß) plays a key promoter role. This factor is associated with human colorectal tumors with a very high prognosis: it increases the survival, invasion, and metastasis of CRC cells, thus functioning as an oncogene. The inhibition of this factor can constitute a major therapeutic route for CRC treatment. Various chemical drugs including synthetic molecules and biotherapies have been developed as TGF-ß inhibitors. Moreover, the scientific community has recently shown a major interest in screening natural drugs inhibiting TGF-ß in CRC. In this context, we carried out this review article using computerized databases, such as PubMed, Google Scholar, Springer Link, Science Direct, Cochrane Library, Embase, Web of Science, and Scopus, to highlight the molecular mechanism of TGF-ß in CRC induction and progression and current advances in the pharmacodynamic effects of natural bioactive substances targeting TGF-ß in CRC.
Asunto(s)
Neoplasias Colorrectales , Transducción de Señal , Factor de Crecimiento Transformador beta , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Terapia Molecular DirigidaRESUMEN
The development of natural substances derived from nature poses a significant challenge as technologies for the extraction and characterization of active principles advance. Hispolon has received a lot of attention in recent years, ascribable to its wide range of biological activities. It is a phenolic molecule that was extracted from several mushroom species such as Phellinus igniarius, Phellinus linteus, Phellinus lonicerinus, Phellinus merrillii, and Inonotus hispidus. To provide a comprehensive overview of the pharmacological activities of hispolon, this review highlights its anticancer, anti-inflammatory, antioxidant, antibacterial, and anti-diabetic activities. Several scientific research databases, including Google Scholar, Web of Science, PubMed, SciFinder, SpringerLink, Science Direct, Scopus, and, Wiley Online were used to gather the data on hispolon until May 2024. The in vitro and in vivo studies have revealed that hispolon exhibited significant anticancer properties through modifying several signaling pathways including cell apoptosis, cycle arrest, autophagy, and inhibition of angiogenesis and metastasis. Hispolon's antimicrobial activity was proven against many bacterial, fungal, and viral pathogens, highlighting its potential use as a novel antimicrobial agent. Additionally, hispolon displayed potent anti-inflammatory activity through the suppression of key inflammatory mediators, such as inducible NO synthase (iNOS), tumor necrosis factor-α (TNF-α), and cyclooxygenases-2 (COX-2), and the modulation of mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways. The antioxidant potential of hispolon was attributed to its capacity to neutralize reactive oxygen species (ROS) and to increase the activity of antioxidant enzymes, indicating a possible involvement in the prevention of oxidative stress-related illnesses. Hispolon's antidiabetic activity was associated with the inhibition of aldose reductase and α-glucosidase. Studies on hispolon emphasized its potential use as a promising scaffold for the development of novel therapeutic agents targeting various diseases, including cancer, infectious diseases, inflammatory disorders, and diabetes.
Asunto(s)
Antiinflamatorios , Antineoplásicos , Antioxidantes , Animales , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Antineoplásicos/farmacología , Antineoplásicos/aislamiento & purificación , Hipoglucemiantes/farmacología , Hipoglucemiantes/aislamiento & purificación , Iminoazúcares/farmacología , Iminoazúcares/química , Transducción de Señal/efectos de los fármacos , CatecolesRESUMEN
Cyanobacteria and microalgae contain various phytochemicals, including bioactive components in the form of secondary metabolites, namely flavonoids, phenolic acids, terpenoids, and tannins, with remarkable anticancer effects. This review highlights the recent advances in bioactive compounds, with potential anticancer activity, produced by cyanobacteria and microalgae. Previous in vitro investigations showed that many of these bioactive compounds exhibit potent effects against different human cancer types, such as leukemia and breast cancers. Multiple mechanisms implicated in the antitumor effect of these compounds were elucidated, including their ability to target cellular, subcellular, and molecular checkpoints linked to cancer development and promotion. Recent findings have highlighted various mechanisms of action of bioactive compounds produced by cyanobacteria and microalgae, including induction of autophagy and apoptosis, inhibition of telomerase and protein kinases, as well as modulation of epigenetic modifications. In vivo investigations have demonstrated a potent anti-angiogenesis effect on solid tumors, as well as a reduction in tumor volume. Some of these compounds were examined in clinical investigations for certain types of cancers, making them potent candidates/scaffolds for antitumor drug development.
Asunto(s)
Antineoplásicos , Cianobacterias , Microalgas , Neoplasias , Humanos , Microalgas/química , Cianobacterias/metabolismo , Factores Biológicos , Antineoplásicos/química , Neoplasias/tratamiento farmacológicoRESUMEN
Cancer progression is strongly affected by epigenetic events in addition to genetic modifications. One of the key elements in the epigenetic control of gene expression is histone modification through acetylation, which is regulated by the synergy between histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs are thought to offer considerable potential for the development of anticancer medications, particularly when used in conjunction with other anticancer medications and/or radiotherapy. Belinostat (Beleodaq, PXD101) is a pan-HDAC unsaturated hydroxamate inhibitor with a sulfonamide group that has been approved by the U.S. Food and Drug Administration (FDA) for the treatment of refractory or relapsed peripheral T-cell lymphoma (PTCL) and solid malignancies or and other hematological tissues. This drug modifies histones and epigenetic pathways. Because HDAC and HAT imbalance can lead to downregulation of regulatory genes, resulting in tumorigenesis. Inhibition of HDACs by belinostat indirectly promotes anti-cancer therapeutic effect by provoking acetylated histone accumulation, re-establishing normal gene expressions in cancer cells and stimulating other routes such as the immune response, p27 signaling cascades, caspase 3 activation, nuclear protein poly (ADP-ribose) polymerase-1 (PARP-1) degradation, cyclin A (G2/M phase), cyclin E1 (G1/S phase) and other events. In addition, belinostat has already been discovered to increase p21WAF1 in a number of cell lines (melanoma, prostate, breast, lung, colon, and ovary). This cyclin-dependent kinase inhibitor actually has a role in processes that cause cell cycle arrest and apoptosis. Belinostat's clinical effectiveness, comprising Phase I and II studies within the areas of solid and hematological cancers, has been evidenced through several investigative trials that have supported its potential to be a valuable anti-cancer drug. The purpose of this research was to provide insight on the specific molecular processes through which belinostat inhibits HDAC. The ability to investigate new therapeutic options employing targeted therapy and acquire a deeper understanding of cancer cell abnormalities may result from a better understanding of these particular routes.