RESUMEN
OBJECTIVES: To evaluate the prognostic value of transit time (TT) assessment in the systemic circulation and organ perfusion in patients with ventricular dysfunction (VD). The primary endpoint was defined as death, heart failure admission, or ventricular arrhythmias, and the secondary endpoint was worsening renal function. METHODS: A retrospective study on 139 patients who underwent cardiac magnetic resonance for VD evaluation and 50 controls. TT was measured as peak-to-peak time in signal intensity over time curves obtained at different stages of circulation (right cavities, left cavities, aorta, and peripheral organs) from first-pass perfusion images. Outcomes were monitored over a median follow-up of 15 months. RESULTS: A total of 139 patients were included (84% male, age 63 [57-70] years). Patients exhibited significantly prolonged TT compared to controls, with in-patients showing longer times than outpatients. Among the 29 patients reaching the primary endpoint, both PTT and STT were significantly prolonged (PTT: 9.75 s vs 13.4 s, p < 0.01; STT: 4.77 s vs 7.00 s, p < 0.01). Concurrent prolongation of PTT (> 10 s) and STT (> 5 s) was associated with a higher event probability (42.3%), compared to isolated abnormalities (6.3% for PTT, 6.7% for STT). Multivariate analysis revealed that combined PTT and STT alteration independently predicted the combined endpoint (HR IC 95%: 8.685 (2.415-31.236), p = 0.001). Prolonged RPT was independently associated with renal function deterioration (OR IC 95%: 1.129 (1.015-1.256), p = 0.024). CONCLUSIONS: Evaluation of TT beyond pulmonary circulation provides prognostic insights into VD. Simultaneous assessment of PTT and STT enhances specificity compared to isolated PTT evaluation, predicting combined adverse events. RPT is independently associated with renal impairment. CLINICAL RELEVANCE STATEMENT: For the first time, it is described that transit time can be evaluated in systemic circulation and in peripheral organs and that this assessment can be easily made from conventional CMR perfusion images and holds significant prognostic value. KEY POINTS: Pulmonary transit time is a valuable hemodynamic parameter; systemic transit time may also be valuable. Transit time can be measured in the systemic circulation, and is longer in patients with ventricular dysfunction. Systemic transit time assessed by magnetic resonance imaging identifies patients with ventricular dysfunction who will experience events during follow-up.
RESUMEN
KEY POINTS: Although they are unable to utilize muscle glycogen, McArdle mice adapt favourably to an individualized moderate-intensity endurance exercise training regime. Yet, they fail to reach the performance capacity of healthy mice with normal glycogen availability. There is a remarkable difference in the protein networks involved in muscle tissue adaptations to endurance exercise training in mice with and without glycogen availability. Indeed, endurance exercise training promoted the expression of only three proteins common to both McArdle and wild-type mice: LIMCH1, PARP1 and TIGD4. In turn, trained McArdle mice presented strong expression of mitogen-activated protein kinase 12 (MAPK12). ABSTRACT: McArdle's disease is an inborn disorder of skeletal muscle glycogen metabolism that results in blockade of glycogen breakdown due to mutations in the myophosphorylase gene. We recently developed a mouse model carrying the homozygous p.R50X common human mutation (McArdle mouse), facilitating the study of how glycogen availability affects muscle molecular adaptations to endurance exercise training. Using quantitative differential analysis by liquid chromatography with tandem mass spectrometry, we analysed the quadriceps muscle proteome of 16-week-old McArdle (n = 5) and wild-type (WT) (n = 4) mice previously subjected to 8 weeks' moderate-intensity treadmill training or to an equivalent control (no training) period. Protein networks enriched within the differentially expressed proteins with training in WT and McArdle mice were assessed by hypergeometric enrichment analysis. Whereas endurance exercise training improved the estimated maximal aerobic capacity of both WT and McArdle mice as compared with controls, it was â¼50% lower than normal in McArdle mice before and after training. We found a remarkable difference in the protein networks involved in muscle tissue adaptations induced by endurance exercise training with and without glycogen availability, and training induced the expression of only three proteins common to McArdle and WT mice: LIM and calponin homology domains-containing protein 1 (LIMCH1), poly (ADP-ribose) polymerase 1 (PARP1 - although the training effect was more marked in McArdle mice), and tigger transposable element derived 4 (TIGD4). Trained McArdle mice presented strong expression of mitogen-activated protein kinase 12 (MAPK12). Through an in-depth proteomic analysis, we provide mechanistic insight into how glycogen availability affects muscle protein signalling adaptations to endurance exercise training.
Asunto(s)
Modelos Animales de Enfermedad , Enfermedad del Almacenamiento de Glucógeno Tipo V/fisiopatología , Glucógeno/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiología , Condicionamiento Físico Animal , Proteómica/métodos , Animales , Tolerancia al Ejercicio , Enfermedad del Almacenamiento de Glucógeno Tipo V/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mapas de Interacción de ProteínasRESUMEN
BACKGROUND: Optimal strategies to manage embolization of transcatheter aortic valve implantation (TAVI) devices are unclear; valve-in-valve (ViV) is often used. We aimed to describe through one-single center experience its rate, causes, consequences, and management as well as the rate and relevance of commissural alignment (CA) in this context. METHODS: We identified across 1038 TAVI cases, those cases requiring ViV for the management of first device embolization. CA (absence or mild misalignment) after first and second device was assessed by CT or fluoroscopy. RESULTS: A total of 23 cases (2.2%) were identified, 52.3% embolized towards the aorta and 47.7% towards the ventricle. Suboptimal implant height (38%) and embolization at the time of post-dilation (23%) were the most frequent mechanisms together with greater rate of bicuspid valve (p < 0.001) and a trend to greater annular eccentricity. Procedural and 1-year death occurred in 13% and 34%, respectively (vs. 1.1% and 7.8% in the global cohort, p < 0.001). CA was present in 76.9% of the prostheses initially implanted but was only spontaneously achieved in 30.8% of the second ViV device. Adequate CA of both prostheses was identified in only two cases (8.7%). There were no cases of coronary obstruction. CONCLUSIONS: TAVI device embolization mechanisms can often be predicted and prevented. Mortality following bail-out ViV is higher than in regular TAVI procedures but 2/3 of these patients survived beyond 1-year follow-up. In them, valve degeneration or coronary re-access might be particularly challenging since CA was rarely achieved with both devices suggesting that greater efforts should be made in this regard.
Asunto(s)
Estenosis de la Válvula Aórtica , Prótesis Valvulares Cardíacas , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Reemplazo de la Válvula Aórtica Transcatéter/métodos , Masculino , Femenino , Anciano , Anciano de 80 o más Años , Resultado del Tratamiento , Estenosis de la Válvula Aórtica/cirugía , Estudios Retrospectivos , Estudios de Seguimiento , Diseño de Prótesis , Embolia/etiología , Válvula Aórtica/cirugía , Válvula Aórtica/diagnóstico por imagenRESUMEN
This paper presents an intelligent surveillance platform based on the usage of large numbers of inexpensive sensors designed and developed inside the European Eureka Celtic project HuSIMS. With the aim of maximizing the number of deployable units while keeping monetary and resource/bandwidth costs at a minimum, the surveillance platform is based on the usage of inexpensive visual sensors which apply efficient motion detection and tracking algorithms to transform the video signal in a set of motion parameters. In order to automate the analysis of the myriad of data streams generated by the visual sensors, the platform's control center includes an alarm detection engine which comprises three components applying three different Artificial Intelligence strategies in parallel. These strategies are generic, domain-independent approaches which are able to operate in several domains (traffic surveillance, vandalism prevention, perimeter security, etc.). The architecture is completed with a versatile communication network which facilitates data collection from the visual sensors and alarm and video stream distribution towards the emergency teams. The resulting surveillance system is extremely suitable for its deployment in metropolitan areas, smart cities, and large facilities, mainly because cheap visual sensors and autonomous alarm detection facilitate dense sensor network deployments for wide and detailed coverage.
RESUMEN
Mixed reality opens interesting possibilities as it allows physicians to interact with both, the real physical and the virtual computer-generated environment and objects, in a powerful way. A mixed reality system, based in the HoloLens 2 glasses, has been developed to assist cardiologists in a quite complex interventional procedure: the ultrasound-guided femoral arterial cannulations, during real-time practice in interventional cardiology. The system is divided into two modules, the transmitter module, responsible for sending medical images to HoloLens 2 glasses, and the receiver module, hosted in the HoloLens 2, which renders those medical images, allowing the practitioner to watch and manage them in a 3D environment. The system has been successfully used, between November 2021 and August 2022, in up to 9 interventions by 2 different practitioners, in a large public hospital in central Spain. The practitioners using the system confirmed it as easy to use, reliable, real-time, reachable, and cost-effective, allowing a reduction of operating times, a better control of typical errors associated to the interventional procedure, and opening the possibility to use the medical imagery produced in ubiquitous e-learning. These strengths and opportunities were only nuanced by the risk of potential medical complications emerging from system malfunction or operator errors when using the system (e.g., unexpected momentary lag). In summary, the proposed system can be taken as a realistic proof of concept of how mixed reality technologies can support practitioners when performing interventional and surgical procedures during real-time daily practice.
RESUMEN
Introduction: The use of three-dimensional (3D) reconstruction and printing technology, together with extended reality applied to advanced heart failure adult patients with complex anatomy, is rapidly spreading in clinical practice. We report practical experience with application to acute and chronic heart failure: planning and performing mechanical circulatory device insertion or heart transplantation. Methods: From November 2019 until February 2022, 53 3D virtual biomodels were produced for intervention planning (using Virtual/Augmented Reality and/or 3D printing), following a specific segmentation and preprocessing workflow for biomodelling, in patients with advanced heart failure due to structural heart disease or cardiomyopathies. Four of those patients were complex cases requiring mechanical circulatory support implant procedures in our center. Results: One short-term and three long-term ventricular assist device system were successfully clinically implanted after application of this technique. In other two cases with extremely high procedural risk, visualized after application of this multimodality imaging, heart transplantation was elected. Conclusion: 3D printing based planning and virtual procedure simulation, are of great importance to select appropriate candidates for mechanical circulatory support in case of complex patient anatomy and may help to diminish periprocedural complications. Extended reality represents a perspective tool in planification of complex surgical procedures or ventricular assist device insertion in this setting.
RESUMEN
INTRODUCTION AND OBJECTIVES: We aimed to describe the feasibility and preliminary outcomes of commissural alignment (CA) for the balloon-expandable transcatheter heart valve. METHODS: The relationship among native commissures and transcatheter aortic valve implantation neocommissures was analyzed in 10 consecutive patients with tricuspid severe aortic stenosis undergoing transcatheter aortic valve implantation after guided implantation based on computed tomography analysis with a self-developed software. CA was predicted by in silico bio-modelling in the 10 patients and the calculated rotation was applied during crimping. Degrees of CA and coronary overlap (CO) were measured through 1-month follow up computed tomography. Transvalvular residual gradients and the rate of paravalvular leak were also analyzed. RESULTS: Mean commissural misalignment was 16.7±8°. Four patients showed mild misalignment but none of them showed a moderate or severe degree of misalignment. The in silico model accurately predicted the final in vivo position with a correlation coefficient of 0.983 (95%CI, 0.966-0.992), P <.001. Severe CO with right coronary ostium occurred in 3 patients likely due to ostial eccentricity, and CO was not present with the left coronary artery in any of the patients. Mean transaortic gradient was 6.1±3.3mmHg and there were no moderate-severe paravalvular leaks. CONCLUSIONS: Patient-specific rotation during valve crimping based on preprocedural computed tomography is feasible with balloon-expandable devices and is associated with the absence of moderate or severe commissural misalignment and left main CO.
Asunto(s)
Estenosis de la Válvula Aórtica , Prótesis Valvulares Cardíacas , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/diagnóstico , Estenosis de la Válvula Aórtica/cirugía , Estudios de Factibilidad , Resultado del Tratamiento , Reemplazo de la Válvula Aórtica Transcatéter/métodos , Diseño de PrótesisRESUMEN
This paper presents a proposal of an intelligent video surveillance system able to detect and identify abnormal and alarming situations by analyzing object movement. The system is designed to minimize video processing and transmission, thus allowing a large number of cameras to be deployed on the system, and therefore making it suitable for its usage as an integrated safety and security solution in Smart Cities. Alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. This means that the system employs a high-level conceptual language easy to understand for human operators, capable of raising enriched alarms with descriptions of what is happening on the image, and to automate reactions to them such as alerting the appropriate emergency services using the Smart City safety network.
Asunto(s)
Ciudades , Procesamiento de Imagen Asistido por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Grabación en Video/métodos , Inteligencia Artificial , Actividades Humanas/clasificación , Humanos , Movimiento , SemánticaRESUMEN
This paper presents a proposal for an Artificial Neural Network (ANN)-based architecture for completion and prediction of data retrieved by underwater sensors. Due to the specific conditions under which these sensors operate, it is not uncommon for them to fail, and maintenance operations are difficult and costly. Therefore, completion and prediction of the missing data can greatly improve the quality of the underwater datasets. A performance study using real data is presented to validate the approach, concluding that the proposed architecture is able to provide very low errors. The numbers show as well that the solution is especially suitable for cases where large portions of data are missing, while in situations where the missing values are isolated the improvement over other simple interpolation methods is limited.
Asunto(s)
Bases de Datos Factuales , Almacenamiento y Recuperación de la Información/métodos , Redes Neurales de la Computación , Reconocimiento de Normas Patrones Automatizadas/métodos , Tecnología de Sensores Remotos/instrumentación , Transductores , Agua/análisis , Diseño de Equipo , Análisis de Falla de Equipo , Tecnología de Sensores Remotos/métodosRESUMEN
This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed.
Asunto(s)
Desecación/instrumentación , Monitoreo del Ambiente/instrumentación , Redes Neurales de la Computación , Nicotiana , Agricultura/instrumentación , Agricultura/métodos , Desecación/métodos , Ambiente Controlado , Monitoreo del Ambiente/métodos , Humedad , TemperaturaRESUMEN
INTRODUCTION AND OBJECTIVES: Final position of the neo-commissures is uncontrolled during transcatheter aortic valve implantation (TAVI), potentially hindering coronary access and future procedures. We aimed to develop a standard method to achieve commissural alignment with the ACURATE neo valve. METHODS: The relationship between native and TAVI neo-commissures was analyzed in 11 severe aortic stenosis patients undergoing TAVI. Based on computed tomography analysis, an in silico model was developed to predict final TAVI commissural posts position. A modified implantation technique, accurate commissural alignment (ACA) and a dedicated delivery system were developed. TAVI implants were tested in 3-dimensional (3D) printed models and in vivo. Commissural misalignment and coronary overlap (CO) were analyzed. RESULTS: The in silico model accurately predicted final position of commissural posts irrespective of the implantation technique performed (correlation coefficient, 0.994; 95%CI, 0.989-0.998; P<.001). TAVI implant with patient-specific rotation was simulated in 3D printed models and in 9 patients. ACA-oriented TAVI implants presented adequate commissural alignment in vivo (mean commissural misalignment of 7.7 ±3.9°). None of the ACA oriented implants showed CO, whereas in silico conventional implants predicted CO in 6 of the 9 cases. CONCLUSIONS: Accurate commissural alignment of the ACURATE neo device is feasible by inserting the delivery system with a patient-specific rotation based on computed tomography analysis. This is a simple and reproducible method for commissural alignment that can be potentially used for all kinds of TAVI devices.
Asunto(s)
Estenosis de la Válvula Aórtica , Prótesis Valvulares Cardíacas , Reemplazo de la Válvula Aórtica Transcatéter , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Humanos , Diseño de Prótesis , Resultado del TratamientoRESUMEN
Technological progress in medicine is constantly garnering pace, requiring that physicians constantly update their knowledge. The new wave of technologies breaking through into clinical practice includes the following: a) mHealth, which allows constant monitoring of biological parameters, anytime, anyplace, of hundreds of patients at the same time; b) artificial intelligence, which, powered by new deep learning techniques, are starting to beat human experts at their own game: diagnosis by imaging or electrocardiography; c) 3-dimensional printing, which may lead to patient-specific prostheses; d) systems medicine, which has arisen from big data, and which will open the way to personalized medicine by bringing together genetic, epigenetic, environmental, clinical and social data into complex integral mathematical models to design highly personalized therapies. This state-of-the-art review aims to summarize in a single document the most recent and most important technological trends that are being applied to cardiology, and to provide an overall view that will allow readers to discern at a glance the direction of cardiology in the next few years.
Asunto(s)
Macrodatos , Cardiólogos , Cardiología , Inteligencia Artificial , Diagnóstico por Imagen , HumanosRESUMEN
INTRODUCTION AND OBJECTIVES: Aortic self-expandable (SE) transcatheter aortic valve implantation (TAVI) devices are particularly useful for patients with aortic stenosis and small/tortuous vessels, small aortic annuli, or low coronary ostia. However, it is unclear whether the growing range of SE devices shows comparable hemodynamic and clinical outcomes. We aimed to determine the differential hemodynamic (residual valve area and regurgitation) and clinical outcomes of these devices in comparable scenarios. METHODS: All patients were enrolled from 4 institutions and were managed with 4 different SE TAVI devices. Baseline and follow-up clinical data were collected and echocardiographic tests blindly and centrally analyzed. Patients were compared according to valve type and a 1:1 matched comparison was performed according to degree of calcification, aortic annulus dimensions, left ventricular ejection fraction, and body surface area. RESULTS: In total, 514 patients were included (Evolut R/PRO, 217; ACURATE neo, 107; ALLEGRA, 102; Portico, 88). Surgical risk scores were comparable in the unmatched population. No differences were observed in the post-TAVI regurgitation rate and in in-hospital mortality (2.7%). The rate of pacemaker implantation at discharge was significantly different among devices (P=.049), with Portico showing the highest rate (23%) and ACURATE neo the lowest (9.5%); Evolut R/PRO and ALLEGRA had rates of 15.9% and 21.2%, respectively. The adjusted comparison showed worse residual TAVI gradients and aortic valve area with ACURATE neo vs ALLEGRA (P=.001) but the latter had higher risk of valve embolization and a tendency for more cerebrovascular events. CONCLUSIONS: A matched comparison of 4 SE TAVI devices showed no differences regarding residual aortic regurgitation and in-hospital mortality.
Asunto(s)
Estenosis de la Válvula Aórtica , Prótesis Valvulares Cardíacas , Reemplazo de la Válvula Aórtica Transcatéter , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/diagnóstico , Estenosis de la Válvula Aórtica/cirugía , Hemodinámica , Humanos , Diseño de Prótesis , Volumen Sistólico , Resultado del Tratamiento , Función Ventricular IzquierdaRESUMEN
INTRODUCTION: Coronavirus disease 2019 (COVID-19) is a systemic disease characterized by a disproportionate inflammatory response in the acute phase. This study sought to identify clinical sequelae and their potential mechanism. METHODS: We conducted a prospective single-center study (NCT04689490) of previously hospitalized COVID-19 patients with and without dyspnea during mid-term follow-up. An outpatient group was also evaluated. They underwent serial testing with a cardiopulmonary exercise test (CPET), transthoracic echocardiogram, pulmonary lung test, six-minute walking test, serum biomarker analysis, and quality of life questionaries. RESULTS: Patients with dyspnea (n = 41, 58.6%), compared with asymptomatic patients (n = 29, 41.4%), had a higher proportion of females (73.2 vs. 51.7%; p = 0.065) with comparable age and prevalence of cardiovascular risk factors. There were no significant differences in the transthoracic echocardiogram and pulmonary function test. Patients who complained of persistent dyspnea had a significant decline in predicted peak VO2 consumption (77.8 (64-92.5) vs. 99 (88-105); p < 0.00; p < 0.001), total distance in the six-minute walking test (535 (467-600) vs. 611 (550-650) meters; p = 0.001), and quality of life (KCCQ-23 60.1 ± 18.6 vs. 82.8 ± 11.3; p < 0.001). Additionally, abnormalities in CPET were suggestive of an impaired ventilatory efficiency (VE/VCO2 slope 32 (28.1-37.4) vs. 29.4 (26.9-31.4); p = 0.022) and high PETCO2 (34.5 (32-39) vs. 38 (36-40); p = 0.025). INTERPRETATION: In this study, >50% of COVID-19 survivors present a symptomatic functional impairment irrespective of age or prior hospitalization. Our findings suggest a potential ventilation/perfusion mismatch or hyperventilation syndrome.
RESUMEN
BACKGROUND: Atrial septal defect (ASD) is one of the most common congenital heart diseases. Percutaneous closure is the preferred treatment, but certain complications remain a concern. The most common devices are AMPLATZER™ (ASO) (St. Jude Medical, St. Paul, MN, USA) and Figulla Flex® septal occluders (FSO) (Occlutech GmbH, Jena, Germany). The present study aimed to assess main differences in outcomes. METHODS: A systematic search in Pubmed and Google scholarship was performed by two independent reviewers for any study comparing ASO and FSO. Searched terms were "Figulla", "Amplatzer", and "atrial septal defect". A random-effects model was used. RESULTS: A total of 11 studies including 1770 patients (897 ASO; 873 FSO) were gathered. Baseline clinical and echocardiographic characteristics were comparable although septal aneurysm was more often reported in patients treated with ASO (32% vs. 25%; p = 0.061). Success rate (94% vs. 95%; OR: 0.81; 95% CI: 0.38-1.71; p = 0.58) and peri-procedural complications were comparable. Procedures were shorter, requiring less fluoroscopy time with an FSO device (OR: 0.59; 95% CI: 0.20-0.97; p = 0.003). Although the global rate of complications in long-term was similar, the ASO device was associated with a higher rate of supraventricular arrhythmias (14.7% vs. 7.8%, p = 0.009). CONCLUSIONS: Percutaneous closure of ASD is a safe and effective, irrespective of the type of device. No differences exist regarding procedural success between the ASO and FSO devices but the last was associated to shorter procedure time, less radiation, and lower rate of supraventricular arrhythmias in follow-up. Late cardiac perforation did not occur and death in the follow-up was exceptional.
Asunto(s)
Defectos del Tabique Interatrial , Dispositivo Oclusor Septal , Cateterismo Cardíaco , Ecocardiografía , Alemania , Humanos , Resultado del TratamientoRESUMEN
Objective: The most used search engine for scientific literature, PubMed, provides tools to filter results by several fields. When searching for reports on clinical trials, sample size can be among the most important factors to consider. However, PubMed does not currently provide any means of filtering search results by sample size. Such a filtering tool would be useful in a variety of situations, including meta-analyses or state-of-the-art analyses to support experimental therapies. In this work, a tool was developed to filter articles identified by PubMed based on their reported sample sizes. Materials and Methods: A search engine was designed to send queries to PubMed, retrieve results, and compute estimates of reported sample sizes using a combination of syntactical and machine learning methods. The sample size search tool is publicly available for download at http://ihealth.uemc.es. Its accuracy was assessed against a manually annotated database of 750 random clinical trials returned by PubMed. Results: Validation tests show that the sample size search tool is able to accurately (1) estimate sample size for 70% of abstracts and (2) classify 85% of abstracts into sample size quartiles. Conclusions: The proposed tool was validated as useful for advanced PubMed searches of clinical trials when the user is interested in identifying trials of a given sample size.
Asunto(s)
Algoritmos , Ensayos Clínicos como Asunto , Almacenamiento y Recuperación de la Información/métodos , PubMed , Tamaño de la Muestra , Curva ROC , Motor de Búsqueda , Programas InformáticosRESUMEN
The scheme of a unified Darwinian evolutionary theory for physical and biological systems is described. Every physical system is methodologically endowed with a classical information processor, which turns every system into an agent being also susceptible to evolution. Biological systems retain this structure as natural extensions of physical systems from which they are built up. Optimization of information flows turns out to be the key element to study the possible emergence of quantum behavior and the unified Darwinian description of physical and biological systems. The Darwinian natural selection scheme is completed by the Lamarckian component in the form of the anticipation of states of surrounding bio-physical systems.