Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(4): 1526-1538, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37816305

RESUMEN

Early life experiences can exert a significant influence on cortical and cognitive development. Very preterm birth exposes infants to several adverse environmental factors during hospital admission, which affect cortical architecture. However, the subsequent consequence of very preterm birth on cortical growth from infancy to adolescence has never been defined; despite knowledge of critical periods during childhood for establishment of cortical networks. Our aims were to: chart typical longitudinal cortical development and sex differences in cortical development from birth to adolescence in healthy term-born children; estimate differences in cortical development between children born at term and very preterm; and estimate differences in cortical development between children with normal and impaired cognition in adolescence. This longitudinal cohort study included children born at term (≥37 weeks' gestation) and very preterm (<30 weeks' gestation) with MRI scans at ages 0, 7 and 13 years (n = 66 term-born participants comprising 34 with one scan, 18 with two scans and 14 with three scans; n = 201 very preterm participants comprising 56 with one scan, 88 with two scans and 57 with three scans). Cognitive assessments were performed at age 13 years. Cortical surface reconstruction and parcellation were performed with state-of-the-art, equivalent MRI analysis pipelines for all time points, resulting in longitudinal cortical volume, surface area and thickness measurements for 62 cortical regions. Developmental trajectories for each region were modelled in term-born children, contrasted between children born at term and very preterm, and contrasted between all children with normal and impaired cognition. In typically developing term-born children, we documented anticipated patterns of rapidly increasing cortical volume, area and thickness in early childhood, followed by more subtle changes in later childhood, with smaller cortical size in females than males. In contrast, children born very preterm exhibited increasingly reduced cortical volumes, relative to term-born children, particularly during ages 0-7 years in temporal cortical regions. This reduction in cortical volume in children born very preterm was largely driven by increasingly reduced cortical thickness rather than area. This resulted in amplified cortical volume and thickness reductions by age 13 years in individuals born very preterm. Alterations in cortical thickness development were found in children with impaired language and memory. This study shows that the neurobiological impact of very preterm birth on cortical growth is amplified from infancy to adolescence. These data further inform the long-lasting impact on cortical development from very preterm birth, providing broader insights into neurodevelopmental consequences of early life experiences.


Asunto(s)
Nacimiento Prematuro , Lactante , Niño , Recién Nacido , Humanos , Masculino , Preescolar , Femenino , Adolescente , Estudios Longitudinales , Cognición , Edad Gestacional , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen
2.
Mol Psychiatry ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052980

RESUMEN

Puberty is linked to mental health problems during adolescence, and in particular, the timing of puberty is thought to be an important risk factor. This study developed a new measure of pubertal timing that was built upon multiple pubertal features and their nonlinear changes over time (i.e., with age), and investigated its association with mental health problems. Using the Adolescent Brain Cognitive Development (ABCD) cohort (N ~ 9900, aged 9-13 years), we employed three different models to assess pubertal timing. These models aimed to predict chronological age based on: (i) observed physical development, (ii) hormone levels (testosterone and dehydroepiandrosterone [DHEA]), and (iii) a combination of both physical development and hormones. To achieve this, we utilized a supervised machine learning approach, which allowed us to train the models using the available data and make age predictions based on the input pubertal features. The accuracy of these three models was evaluated, and their associations with mental health problems were examined. The new pubertal timing model performed better at capturing age variance compared to the more commonly used linear regression method. Further, the model based on physical features accounted for the most variance in mental health, such that earlier pubertal timing was associated with higher symptoms. This study demonstrates the utility of our new model of pubertal timing and suggests that, relative to hormonal measures, physical measures of pubertal maturation have a stronger association with mental health problems in early adolescence.

3.
Hum Brain Mapp ; 44(8): 3394-3409, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36988503

RESUMEN

Attention deficit hyperactivity disorder (ADHD) is a prevalent childhood neurodevelopmental disorder. Given the profound brain changes that occur during childhood and adolescence, it is important to examine longitudinal changes of both functional and structural brain connectivity across development in ADHD. This study aimed to examine the development of functional and structural connectivity in children with ADHD compared to controls using graph metrics. One hundred and seventy five individuals (91 children with ADHD and 84 non-ADHD controls) participated in a longitudinal neuroimaging study with up to three waves. Graph metrics were derived from 370 resting state fMRI (197 Control, 173 ADHD) and 297 diffusion weighted imaging data (152 Control, 145 ADHD) acquired between the ages of 9 and 14. For functional connectivity, children with ADHD (compared to typically developing children) showed lower degree, local efficiency and betweenness centrality predominantly in parietal, temporal and visual cortices and higher degree, local efficiency and betweenness centrality in frontal, parietal, and temporal cortices. For structural connectivity, children with ADHD had lower local efficiency in parietal and temporal cortices and, higher degree and betweenness centrality in frontal, parietal and temporal cortices. Further, differential developmental trajectories of functional and structural connectivity for graph measures were observed in higher-order cognitive and sensory regions. Our findings show that topology of functional and structural connectomes matures differently between typically developing controls and children with ADHD during childhood and adolescence. Specifically, functional and structural neural circuits associated with sensory and various higher order cognitive functions are altered in children with ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Conectoma , Adolescente , Humanos , Niño , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Conectoma/métodos , Cognición , Mapeo Encefálico , Vías Nerviosas/diagnóstico por imagen
4.
PLoS Biol ; 18(11): e3000976, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33226978

RESUMEN

Interruption to gestation through preterm birth can significantly impact cortical development and have long-lasting adverse effects on neurodevelopmental outcome. We compared cortical morphology captured by high-resolution, multimodal magnetic resonance imaging (MRI) in n = 292 healthy newborn infants (mean age at birth = 39.9 weeks) with regional patterns of gene expression in the fetal cortex across gestation (n = 156 samples from 16 brains, aged 12 to 37 postconceptional weeks [pcw]). We tested the hypothesis that noninvasive measures of cortical structure at birth mirror areal differences in cortical gene expression across gestation, and in a cohort of n = 64 preterm infants (mean age at birth = 32.0 weeks), we tested whether cortical alterations observed after preterm birth were associated with altered gene expression in specific developmental cell populations. Neonatal cortical structure was aligned to differential patterns of cell-specific gene expression in the fetal cortex. Principal component analysis (PCA) of 6 measures of cortical morphology and microstructure showed that cortical regions were ordered along a principal axis, with primary cortex clearly separated from heteromodal cortex. This axis was correlated with estimated tissue maturity, indexed by differential expression of genes expressed by progenitor cells and neurons, and engaged in stem cell differentiation, neuron migration, and forebrain development. Preterm birth was associated with altered regional MRI metrics and patterns of differential gene expression in glial cell populations. The spatial patterning of gene expression in the developing cortex was thus mirrored by regional variation in cortical morphology and microstructure at term, and this was disrupted by preterm birth. This work provides a framework to link molecular mechanisms to noninvasive measures of cortical development in early life and highlights novel pathways to injury in neonatal populations at increased risk of neurodevelopmental disorder.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/metabolismo , Feto/anatomía & histología , Feto/metabolismo , Encéfalo/diagnóstico por imagen , Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Femenino , Madurez de los Órganos Fetales/genética , Feto/diagnóstico por imagen , Neuroimagen Funcional , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Humanos , Recién Nacido , Recien Nacido Prematuro , Masculino , Imágenes de Resonancia Magnética Multiparamétrica , Neurogénesis/genética , Embarazo , Nacimiento Prematuro , Análisis Espacio-Temporal
5.
Neuroimage ; 247: 118828, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34923131

RESUMEN

Very preterm (VP) birth is associated with an increased risk for later neurodevelopmental and behavioural challenges. Although the neurobiological underpinnings of such challenges continue to be explored, previous studies have reported brain volume and morphology alterations in children and adolescents born VP compared with full-term (FT)-born controls. How these alterations relate to the trajectory of brain maturation, with potential implications for later brain ageing, remains unclear. In this longitudinal study, we investigate the relationship between VP birth and brain development during childhood and adolescence. We construct a normative 'brain age' model to predict age over childhood and adolescence based on measures of brain cortical and subcortical volumes and cortical morphology from structural MRI of a dataset of typically developing children aged 3-21 years (n = 768). Using this model, we examined deviations from normative brain development in a separate dataset of children and adolescents born VP (<30 weeks' gestation) at two timepoints (ages 7 and 13 years) compared with FT-born controls (120 VP and 29 FT children at age 7 years; 140 VP and 47 FT children at age 13 years). Brain age delta (brain-predicted age minus chronological age) was, on average, higher in the VP group at both timepoints compared with controls, however this difference had a small to medium effect size and was not statistically significant. Variance in brain age delta was higher in the VP group compared with controls; this difference was significant at the 13-year timepoint. Within the VP group, there was little evidence of associations between brain age delta and perinatal risk factors or cognitive and motor outcomes. Under the brain age framework, our results may suggest that children and adolescents born VP have similar brain structural developmental trajectories to term-born peers between 7 and 13 years of age.


Asunto(s)
Desarrollo del Adolescente , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Desarrollo Infantil , Imagen por Resonancia Magnética/métodos , Nacimiento Prematuro , Adolescente , Mapeo Encefálico , Preescolar , Conjuntos de Datos como Asunto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Lactante , Recién Nacido , Aprendizaje Automático , Masculino
6.
Cereb Cortex ; 31(1): 681-693, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32959054

RESUMEN

The neurobiology of heterogeneous neurodevelopmental disorders such as Autism Spectrum Disorders (ASD) is still unknown. We hypothesized that differences in subject-level properties of intrinsic brain networks were important features that could predict individual variation in ASD symptom severity. We matched cases and controls from a large multicohort ASD dataset (ABIDE-II) on age, sex, IQ, and image acquisition site. Subjects were matched at the individual level (rather than at group level) to improve homogeneity within matched case-control pairs (ASD: n = 100, mean age = 11.43 years, IQ = 110.58; controls: n = 100, mean age = 11.43 years, IQ = 110.70). Using task-free functional magnetic resonance imaging, we extracted intrinsic functional brain networks using projective non-negative matrix factorization. Intrapair differences in strength in subnetworks related to the salience network (SN) and the occipital-temporal face perception network were robustly associated with individual differences in social impairment severity (T = 2.206, P = 0.0301). Findings were further replicated and validated in an independent validation cohort of monozygotic twins (n = 12; 3 pairs concordant and 3 pairs discordant for ASD). Individual differences in the SN and face-perception network are centrally implicated in the neural mechanisms of social deficits related to ASD.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Encéfalo/fisiopatología , Individualidad , Vías Nerviosas/fisiopatología , Adolescente , Adulto , Mapeo Encefálico/métodos , Niño , Humanos , Imagen por Resonancia Magnética/métodos , Masculino
7.
Neuroimage ; 235: 118036, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33838267

RESUMEN

Typical brain development follows a protracted trajectory throughout childhood and adolescence. Deviations from typical growth trajectories have been implicated in neurodevelopmental and psychiatric disorders. Recently, the use of machine learning algorithms to model age as a function of structural or functional brain properties has been used to examine advanced or delayed brain maturation in healthy and clinical populations. Termed 'brain age', this approach often relies on complex, nonlinear models that can be difficult to interpret. In this study, we use model explanation methods to examine the cortical features that contribute to brain age modelling on an individual basis. In a large cohort of n = 768 typically-developing children (aged 3-21 years), we build models of brain development using three different machine learning approaches. We employ SHAP, a model-agnostic technique to identify sample-specific feature importance, to identify regional cortical metrics that explain errors in brain age prediction. We find that, on average, brain age prediction and the cortical features that explain model predictions are consistent across model types and reflect previously reported patterns of regions brain development. However, while several regions are found to contribute to brain age prediction error, we find little spatial correspondence between individual estimates of feature importance, even when matched for age, sex and brain age prediction error. We also find no association between brain age error and cognitive performance in this typically-developing sample. Overall, this study shows that, while brain age estimates based on cortical development are relatively robust and consistent across model types and preprocessing strategies, significant between-subject variation exists in the features that explain erroneous brain age predictions on an individual level.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Adolescente , Algoritmos , Teorema de Bayes , Niño , Estudios de Cohortes , Femenino , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Masculino
8.
Pediatr Res ; 89(6): 1452-1460, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32920605

RESUMEN

BACKGROUND: Very preterm (VP) children are at risk of memory and emotional impairments; however, the neural correlates remain incompletely defined. This study investigated the effect of VP birth on white matter tracts traditionally related to episodic memory and emotion. METHODS: The cingulum, fornix, uncinate fasciculus, medial forebrain bundle and anterior thalamic radiation were reconstructed using tractography in 144 VP children and 33 full-term controls at age 7 years. RESULTS: Compared with controls, VP children had higher axial, radial, and mean diffusivities and neurite orientation dispersion, and lower volume and neurite density in the fornix, along with higher neurite orientation dispersion in the medial forebrain bundle. Support vector classification models based on tract measures significantly classified VP children and controls. Higher fractional anisotropy and lower diffusivities in the cingulum, uncinate fasciculus, medial forebrain bundle and anterior thalamic radiation were associated with better episodic memory, independent of key perinatal risk factors. Support vector regression models using tract measures did not predict episodic memory and emotional outcomes. CONCLUSIONS: Altered tract structure is related to adverse episodic memory outcomes in VP children, but further research is required to determine the ability of tract structure to predict outcomes of individual children. IMPACT: We studied white matter fibre tracts thought to be involved in episodic memory and emotion in VP and full-term children using diffusion magnetic resonance imaging and machine learning. VP children have altered fornix and medial forebrain bundle structure compared with full-term children. Altered tract structure can be detected using machine learning, which accurately classified VP and full-term children using tract data. Altered cingulum, uncinate fasciculus, medial forebrain bundle and anterior thalamic radiation structure was associated with poorer episodic memory skills using linear regression. The ability of tract structure to predict episodic memory and emotional outcomes of individual children based on support vector regression was limited.


Asunto(s)
Emociones , Recien Nacido Prematuro/fisiología , Memoria , Sustancia Blanca/fisiología , Estudios de Casos y Controles , Femenino , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Masculino
9.
Hum Brain Mapp ; 41(9): 2317-2333, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32083379

RESUMEN

Brain atlases providing standardised identification of neonatal brain regions are key in investigating neurological disorders of early childhood. Our previously developed Melbourne Children's Regional Infant Brain (M-CRIB) and M-CRIB 2.0 neonatal brain atlases provide standardised parcellation of 100 brain regions including cortical, subcortical, and cerebellar regions. The aim of this study was to extend M-CRIB atlas coverage to include 54 white matter (WM) regions. Participants were 10 healthy term-born neonates that were used to create the initial M-CRIB atlas. WM regions were manually segmented based on T2 images and co-registered diffusion tensor imaging-based, direction-encoded colour maps. Our labelled regions imitate the Johns Hopkins University neonatal atlas, with minor anatomical modifications. All segmentations were reviewed and approved by a paediatric radiologist and a neurosurgery research fellow for anatomical accuracy. The resulting neonatal WM atlas comprises 54 WM regions: 24 paired regions, and six unpaired regions comprising five corpus callosum subdivisions, and one pontine crossing tract. Detailed protocols for manual WM parcellations are provided, and the M-CRIB-WM atlas is presented together with the existing M-CRIB cortical, subcortical, and cerebellar parcellations in 10 individual neonatal MRI data sets. The novel M-CRIB-WM atlas, along with the M-CRIB cortical and subcortical atlases, provide neonatal whole brain MRI coverage in the first multi-subject manually parcellated neonatal atlas compatible with atlases commonly used at older time points. The M-CRIB-WM atlas is publicly available, providing a valuable tool that will help facilitate neuroimaging research into neonatal brain development in both healthy and diseased states.


Asunto(s)
Atlas como Asunto , Encéfalo/anatomía & histología , Imagen de Difusión Tensora , Sustancia Blanca/anatomía & histología , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Recién Nacido , Masculino , Sustancia Blanca/diagnóstico por imagen
10.
Brain ; 142(12): 3806-3833, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31665242

RESUMEN

Microglia of the developing brain have unique functional properties but how their activation states are regulated is poorly understood. Inflammatory activation of microglia in the still-developing brain of preterm-born infants is associated with permanent neurological sequelae in 9 million infants every year. Investigating the regulators of microglial activation in the developing brain across models of neuroinflammation-mediated injury (mouse, zebrafish) and primary human and mouse microglia we found using analysis of genes and proteins that a reduction in Wnt/ß-catenin signalling is necessary and sufficient to drive a microglial phenotype causing hypomyelination. We validated in a cohort of preterm-born infants that genomic variation in the Wnt pathway is associated with the levels of connectivity found in their brains. Using a Wnt agonist delivered by a blood-brain barrier penetrant microglia-specific targeting nanocarrier we prevented in our animal model the pro-inflammatory microglial activation, white matter injury and behavioural deficits. Collectively, these data validate that the Wnt pathway regulates microglial activation, is critical in the evolution of an important form of human brain injury and is a viable therapeutic target.


Asunto(s)
Encéfalo/metabolismo , Inflamación/metabolismo , Microglía/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Animales Modificados Genéticamente , Barrera Hematoencefálica/metabolismo , Células Cultivadas , Biología Computacional , Humanos , Ratones , Pez Cebra
11.
Proc Natl Acad Sci U S A ; 114(52): 13744-13749, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29229843

RESUMEN

Preterm infants show abnormal structural and functional brain development, and have a high risk of long-term neurocognitive problems. The molecular and cellular mechanisms involved are poorly understood, but novel methods now make it possible to address them by examining the relationship between common genetic variability and brain endophenotype. We addressed the hypothesis that variability in the Peroxisome Proliferator Activated Receptor (PPAR) pathway would be related to brain development. We employed machine learning in an unsupervised, unbiased, combined analysis of whole-brain diffusion tractography together with genomewide, single-nucleotide polymorphism (SNP)-based genotypes from a cohort of 272 preterm infants, using Sparse Reduced Rank Regression (sRRR) and correcting for ethnicity and age at birth and imaging. Empirical selection frequencies for SNPs associated with cerebral connectivity ranged from 0.663 to zero, with multiple highly selected SNPs mapping to genes for PPARG (six SNPs), ITGA6 (four SNPs), and FXR1 (two SNPs). SNPs in PPARG were significantly overrepresented (ranked 7-11 and 67 of 556,000 SNPs; P < 2.2 × 10-7), and were mostly in introns or regulatory regions with predicted effects including protein coding and nonsense-mediated decay. Edge-centric graph-theoretic analysis showed that highly selected white-matter tracts were consistent across the group and important for information transfer (P < 2.2 × 10-17); they most often connected to the insula (P < 6 × 10-17). These results suggest that the inhibited brain development seen in humans exposed to the stress of a premature extrauterine environment is modulated by genetic factors, and that PPARG signaling has a previously unrecognized role in cerebral development.


Asunto(s)
Encéfalo/diagnóstico por imagen , Conectoma , Imagen de Difusión Tensora , Recien Nacido Prematuro , Aprendizaje Automático , PPAR gamma/genética , Polimorfismo de Nucleótido Simple , Femenino , Humanos , Recién Nacido , Integrina alfa6/genética , Masculino , Proteínas de Unión al ARN/genética
12.
Hum Brain Mapp ; 40(16): 4630-4644, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31313446

RESUMEN

The cortex is organised into broadly hierarchical functional systems with distinct neuroanatomical characteristics reflected by macroscopic measures of cortical morphology. Diffusion-weighted magnetic resonance imaging allows the delineation of areal connectivity, changes to which reflect the ongoing maturation of white matter tracts. These developmental processes are intrinsically linked with timing coincident with the development of cognitive function. In this study, we use a data-driven multivariate approach, nonnegative matrix factorisation, to define cortical regions that co-vary together across a large paediatric cohort (n = 456) and are associated with specific subnetworks of cortical connectivity. We find that age between 3 and 21 years is associated with accelerated cortical thinning in frontoparietal regions, whereas relative thinning of primary motor and sensory regions is slower. Together, the subject-specific weights of the derived set of cortical components can be combined to predict chronological age. Structural connectivity networks reveal a relative increase in strength in connection within, as opposed to between hemispheres that vary in line with cortical changes. We confirm our findings in an independent sample.


Asunto(s)
Envejecimiento/fisiología , Envejecimiento/psicología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/crecimiento & desarrollo , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/crecimiento & desarrollo , Adolescente , Niño , Preescolar , Estudios de Cohortes , Imagen de Difusión Tensora , Femenino , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/crecimiento & desarrollo , Lateralidad Funcional , Humanos , Procesamiento de Imagen Asistido por Computador , Estudios Longitudinales , Masculino , Pruebas Neuropsicológicas , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/crecimiento & desarrollo , Reproducibilidad de los Resultados , Adulto Joven
13.
Ann Neurol ; 82(2): 233-246, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28719076

RESUMEN

OBJECTIVE: Premature birth is associated with numerous complex abnormalities of white and gray matter and a high incidence of long-term neurocognitive impairment. An integrated understanding of these abnormalities and their association with clinical events is lacking. The aim of this study was to identify specific patterns of abnormal cerebral development and their antenatal and postnatal antecedents. METHODS: In a prospective cohort of 449 infants (226 male), we performed a multivariate and data-driven analysis combining multiple imaging modalities. Using canonical correlation analysis, we sought separable multimodal imaging markers associated with specific clinical and environmental factors and correlated to neurodevelopmental outcome at 2 years. RESULTS: We found five independent patterns of neuroanatomical variation that related to clinical factors including age, prematurity, sex, intrauterine complications, and postnatal adversity. We also confirmed the association between imaging markers of neuroanatomical abnormality and poor cognitive and motor outcomes at 2 years. INTERPRETATION: This data-driven approach defined novel and clinically relevant imaging markers of cerebral maldevelopment, which offer new insights into the nature of preterm brain injury. Ann Neurol 2017;82:233-246.


Asunto(s)
Encéfalo/anomalías , Encéfalo/crecimiento & desarrollo , Procesamiento de Imagen Asistido por Computador , Recien Nacido Prematuro/fisiología , Recien Nacido Prematuro/psicología , Anisotropía , Preescolar , Disfunción Cognitiva/patología , Femenino , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Modelos Estadísticos , Trastornos Motores/patología , Estudios Prospectivos , Factores de Riesgo
14.
Proc Natl Acad Sci U S A ; 112(20): 6485-90, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25941391

RESUMEN

Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions.


Asunto(s)
Corteza Cerebral/fisiología , Desarrollo Infantil/fisiología , Tálamo/fisiología , Factores de Edad , Humanos , Recién Nacido , Recien Nacido Prematuro , Imagen por Resonancia Magnética , Vías Nerviosas/fisiología , Oxígeno/sangre
15.
Hum Mol Genet ; 24(10): 2771-83, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25652408

RESUMEN

Dymeclin is a Golgi-associated protein whose deficiency causes Dyggve-Melchior-Clausen syndrome (DMC, MIM #223800), a rare recessively inherited spondyloepimetaphyseal dysplasia consistently associated with postnatal microcephaly and intellectual disability. While the skeletal phenotype of DMC patients has been extensively described, very little is known about their cerebral anomalies, which result in brain growth defects and cognitive dysfunction. We used Dymeclin-deficient mice to determine the cause of microcephaly and to identify defective mechanisms at the cellular level. Brain weight and volume were reduced in all mutant mice from postnatal day 5 onward. Mutant mice displayed a narrowing of the frontal cortex, although cortical layers were normally organized. Interestingly, the corpus callosum was markedly thinner, a characteristic we also identified in DMC patients. Consistent with this, the myelin sheath was thinner, less compact and not properly rolled, while the number of mature oligodendrocytes and their ability to produce myelin basic protein were significantly decreased. Finally, cortical neurons from mutant mice and primary fibroblasts from DMC patients displayed substantially delayed endoplasmic reticulum to Golgi trafficking, which could be fully rescued upon Dymeclin re-expression. These findings indicate that Dymeclin is crucial for proper myelination and anterograde neuronal trafficking, two processes that are highly active during postnatal brain maturation.


Asunto(s)
Enanismo/genética , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Microcefalia/genética , Osteocondrodisplasias/congénito , Proteínas/genética , Animales , Preescolar , Regulación hacia Abajo , Retículo Endoplásmico Rugoso/metabolismo , Femenino , Aparato de Golgi/metabolismo , Humanos , Lactante , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Mutantes , Mutación , Vaina de Mielina/genética , Vaina de Mielina/fisiología , Osteocondrodisplasias/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología
16.
Hum Brain Mapp ; 38(8): 4169-4184, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28560746

RESUMEN

The structural organization of the brain can be characterized as a hierarchical ensemble of segregated modules linked by densely interconnected hub regions that facilitate distributed functional interactions. Disturbances to this network may be an important marker of abnormal development. Recently, several neurodevelopmental disorders, including autism spectrum disorder (ASD), have been framed as disorders of connectivity but the full nature and timing of these disturbances remain unclear. In this study, we use non-negative matrix factorization, a data-driven, multivariate approach, to model the structural network architecture of the brain as a set of superposed subnetworks, or network components. In an openly available dataset of 196 subjects scanned between 5 and 85 years we identify a set of robust and reliable subnetworks that develop in tandem with age and reflect both anatomically local and long-range, network hub connections. In a second experiment, we compare network components in a cohort of 51 high-functioning ASD adolescents to a group of age-matched controls. We identify a specific subnetwork representing an increase in local connection strength in the cingulate cortex in ASD (t = 3.44, P < 0.001). This work highlights possible long-term implications of alterations to the developmental trajectories of specific cortical subnetworks. Hum Brain Mapp 38:4169-4184, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Estudios de Cohortes , Simulación por Computador , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Análisis Multivariante , Vías Nerviosas/diagnóstico por imagen , Reproducibilidad de los Resultados , Aprendizaje Automático no Supervisado , Adulto Joven
17.
Cereb Cortex ; 26(3): 1322-35, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26742566

RESUMEN

The second half of pregnancy is a crucial period for the development of structural brain connectivity, and an abrupt interruption of the typical processes of development during this phase caused by the very preterm birth (<33 weeks of gestation) is likely to result in long-lasting consequences. We used structural and diffusion imaging data to reconstruct the brain structural connectome in very preterm-born adults. We assessed its rich-club organization and modularity as 2 characteristics reflecting the capacity to support global and local information exchange, respectively. Our results suggest that the establishment of global connectivity patterns is prioritized over peripheral connectivity following early neurodevelopmental disruption. The very preterm brain exhibited a stronger rich-club architecture than the control brain, despite possessing a relative paucity of white matter resources. Using a simulated lesion approach, we also investigated whether putative structural reorganization takes place in the very preterm brain in order to compensate for its anatomical constraints. We found that connections between the basal ganglia and (pre-) motor regions, as well as connections between subcortical regions, assumed an altered role in the structural connectivity of the very preterm brain, and that such alterations had functional implications for information flow, rule learning, and verbal IQ.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Recien Nacido Prematuro/crecimiento & desarrollo , Adulto , Cognición , Estudios de Cohortes , Conectoma , Femenino , Estudios de Seguimiento , Humanos , Procesamiento de Imagen Asistido por Computador , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/patología , Plasticidad Neuronal , Pruebas Neuropsicológicas , Tamaño de los Órganos , Análisis de Componente Principal , Sustancia Blanca/crecimiento & desarrollo , Sustancia Blanca/patología
18.
Proc Natl Acad Sci U S A ; 111(20): 7456-61, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24799693

RESUMEN

Combining diffusion magnetic resonance imaging and network analysis in the adult human brain has identified a set of highly connected cortical hubs that form a "rich club"--a high-cost, high-capacity backbone thought to enable efficient network communication. Rich-club architecture appears to be a persistent feature of the mature mammalian brain, but it is not known when this structure emerges during human development. In this longitudinal study we chart the emergence of structural organization in mid to late gestation. We demonstrate that a rich club of interconnected cortical hubs is already present by 30 wk gestation. Subsequently, until the time of normal birth, the principal development is a proliferation of connections between core hubs and the rest of the brain. We also consider the impact of environmental factors on early network development, and compare term-born neonates to preterm infants at term-equivalent age. Though rich-club organization remains intact following premature birth, we reveal significant disruptions in both in cortical-subcortical connectivity and short-distance corticocortical connections. Rich club organization is present well before the normal time of birth and may provide the fundamental structural architecture for the subsequent emergence of complex neurological functions. Premature exposure to the extrauterine environment is associated with altered network architecture and reduced network capacity, which may in part account for the high prevalence of cognitive problems in preterm infants.


Asunto(s)
Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Red Nerviosa/fisiología , Mapeo Encefálico , Cognición , Conectoma , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Masculino , Vías Nerviosas , Nacimiento Prematuro , Nacimiento a Término , Factores de Tiempo
19.
Neuroradiology ; 58(4): 401-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26759316

RESUMEN

INTRODUCTION: There is increasing interest in neurosurgical interventions for hypertonicity in children and young people (CAYP), which often presents with a mixture of dystonia and spasticity. Significant spasticity would usually be considered a contraindication for deep brain stimulation (DBS) and more suitably treated with intrathecal baclofen (ITB). We aimed to explore whether white matter microstructure, as measured by Fractional Anisotropy (FA), differed between CAYP selected for DBS compared to ITB surgery. METHODS: We retrospectively analysed Diffusion Tensor Imaging for 31 CAYP selected for DBS surgery (14 primary dystonia, 17 secondary dystonia) and 10 CAYP selected for ITB surgery. A voxel-wise comparison of FA values was performed using tract-based spatial statistics, comparing primary and secondary dystonia groups to the ITB group, and the two dystonia groups. RESULTS: Widespread areas of reduced FA were demonstrated in ITB compared to either DBS group and in CAYP with secondary compared to primary dystonia. These changes were not restricted to motor pathways. Region of interest (ROI) analysis from the corticospinal tract (CST) demonstrated groupwise differences but overlapping values at the individual level. CONCLUSIONS: DTI measures may contribute to decision making for CAYP selection for movement disorder surgery. Significant differences in CAYP with secondary dystonia selected for DBS surgery compared to CAYP selected for ITB pump implants, suggesting that more extensive white matter injury may be a feature of the spastic motor phenotype. Altered white matter microstructure could potentially explain the reduced responsiveness to interventions such as DBS in secondary compared to primary dystonia.


Asunto(s)
Baclofeno/uso terapéutico , Estimulación Encefálica Profunda , Imagen de Difusión Tensora , Distonía/diagnóstico por imagen , Relajantes Musculares Centrales/uso terapéutico , Espasticidad Muscular/diagnóstico por imagen , Adolescente , Anisotropía , Niño , Preescolar , Distonía/terapia , Humanos , Inyecciones Espinales , Espasticidad Muscular/terapia , Selección de Paciente
20.
Cereb Cortex ; 25(11): 4310-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25596587

RESUMEN

Thalamocortical connections are: essential for brain function, established early in development, and significantly impaired following preterm birth. Impaired cognitive abilities in preterm infants may be related to disruptions in thalamocortical connectivity. The aim of this study was to test the hypothesis: thalamocortical connectivity in the preterm brain at term-equivalent is correlated with cognitive performance in early childhood. We examined 57 infants who were born <35 weeks gestational age (GA) and had no evidence of focal abnormality on magnetic resonance imaging (MRI). Infants underwent diffusion MRI at term and cognitive performance at 2 years was assessed using the Bayley III scales of Infant and Toddler development. Cognitive scores at 2 years were correlated with structural connectivity between the thalamus and extensive cortical regions at term. Mean thalamocortical connectivity across the whole cortex explained 11% of the variance in cognitive scores at 2 years. The inclusion of GA at birth and parental socioeconomic group in the model explained 30% of the variance in subsequent cognitive performance. Identifying impairments in thalamocortical connectivity as early as term equivalent can help identify those infants at risk of subsequent cognitive delay and may be useful to assess efficacy of potential treatments at an early age.


Asunto(s)
Corteza Cerebral/patología , Trastornos del Conocimiento/diagnóstico , Trastornos del Conocimiento/etiología , Nacimiento Prematuro/patología , Nacimiento Prematuro/fisiopatología , Tálamo/patología , Imagen de Difusión por Resonancia Magnética , Femenino , Edad Gestacional , Sustancia Gris/patología , Humanos , Procesamiento de Imagen Asistido por Computador , Lactante , Recién Nacido , Modelos Lineales , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/patología , Pruebas Neuropsicológicas , Valor Predictivo de las Pruebas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA