Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 16(12): 29179-206, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26690135

RESUMEN

Since the decoding of the Human Genome, techniques from bioinformatics, statistics, and machine learning have been instrumental in uncovering patterns in increasing amounts and types of different data produced by technical profiling technologies applied to clinical samples, animal models, and cellular systems. Yet, progress on unravelling biological mechanisms, causally driving diseases, has been limited, in part due to the inherent complexity of biological systems. Whereas we have witnessed progress in the areas of cancer, cardiovascular and metabolic diseases, the area of neurodegenerative diseases has proved to be very challenging. This is in part because the aetiology of neurodegenerative diseases such as Alzheimer´s disease or Parkinson´s disease is unknown, rendering it very difficult to discern early causal events. Here we describe a panel of bioinformatics and modeling approaches that have recently been developed to identify candidate mechanisms of neurodegenerative diseases based on publicly available data and knowledge. We identify two complementary strategies-data mining techniques using genetic data as a starting point to be further enriched using other data-types, or alternatively to encode prior knowledge about disease mechanisms in a model based framework supporting reasoning and enrichment analysis. Our review illustrates the challenges entailed in integrating heterogeneous, multiscale and multimodal information in the area of neurology in general and neurodegeneration in particular. We conclude, that progress would be accelerated by increasing efforts on performing systematic collection of multiple data-types over time from each individual suffering from neurodegenerative disease. The work presented here has been driven by project AETIONOMY; a project funded in the course of the Innovative Medicines Initiative (IMI); which is a public-private partnership of the European Federation of Pharmaceutical Industry Associations (EFPIA) and the European Commission (EC).


Asunto(s)
Minería de Datos , Enfermedades Neurodegenerativas/genética , Animales , Biología Computacional , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Bases del Conocimiento , Polimorfismo de Nucleótido Simple
2.
iScience ; 19: 1160-1172, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31541920

RESUMEN

We introduce and develop a method that demonstrates that the algorithmic information content of a system can be used as a steering handle in the dynamical phase space, thus affording an avenue for controlling and reprogramming systems. The method consists of applying a series of controlled interventions to a networked system while estimating how the algorithmic information content is affected. We demonstrate the method by reconstructing the phase space and their generative rules of some discrete dynamical systems (cellular automata) serving as controlled case studies. Next, the model-based interventional or causal calculus is evaluated and validated using (1) a huge large set of small graphs, (2) a number of larger networks with different topologies, and finally (3) biological networks derived from a widely studied and validated genetic network (E. coli) as well as on a significant number of differentiating (Th17) and differentiated human cells from a curated biological network data.

3.
Philos Trans A Math Phys Eng Sci ; 374(2080)2016 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-27698038

RESUMEN

Systems in nature capable of collective behaviour are nonlinear, operating across several scales. Yet our ability to account for their collective dynamics differs in physics, chemistry and biology. Here, we briefly review the similarities and differences between mathematical modelling of adaptive living systems versus physico-chemical systems. We find that physics-based chemistry modelling and computational neuroscience have a shared interest in developing techniques for model reductions aiming at the identification of a reduced subsystem or slow manifold, capturing the effective dynamics. By contrast, as relations and kinetics between biological molecules are less characterized, current quantitative analysis under the umbrella of bioinformatics focuses on signal extraction, correlation, regression and machine-learning analysis. We argue that model reduction analysis and the ensuing identification of manifolds bridges physics and biology. Furthermore, modelling living systems presents deep challenges as how to reconcile rich molecular data with inherent modelling uncertainties (formalism, variables selection and model parameters). We anticipate a new generative data-driven modelling paradigm constrained by identified governing principles extracted from low-dimensional manifold analysis. The rise of a new generation of models will ultimately connect biology to quantitative mechanistic descriptions, thereby setting the stage for investigating the character of the model language and principles driving living systems.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.


Asunto(s)
Algoritmos , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Teoría Cuántica , Simulación por Computador , Bases de Datos Factuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA