Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Kidney Int ; 96(4): 890-905, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31301888

RESUMEN

Fibroblast growth factor 23 (FGF23) regulates phosphate homeostasis, and its early rise in patients with chronic kidney disease is independently associated with all-cause mortality. Since inflammation is characteristic of chronic kidney disease and associates with increased plasma FGF23 we examined whether inflammation directly stimulates FGF23. In a population-based cohort, plasma tumor necrosis factor (TNF) was the only inflammatory cytokine that independently and positively correlated with plasma FGF23. Mouse models of chronic kidney disease showed signs of renal inflammation, renal FGF23 expression and elevated systemic FGF23 levels. Renal FGF23 expression coincided with expression of the orphan nuclear receptor Nurr1 regulating FGF23 in other organs. Antibody-mediated neutralization of TNF normalized plasma FGF23 and suppressed ectopic renal Fgf23 expression. Conversely, TNF administration to control mice increased plasma FGF23 without altering plasma phosphate. Moreover, in Il10-deficient mice with inflammatory bowel disease and normal kidney function, plasma FGF23 was elevated and normalized upon TNF neutralization. Thus, the inflammatory cytokine TNF contributes to elevated systemic FGF23 levels and also triggers ectopic renal Fgf23 expression in animal models of chronic kidney disease.


Asunto(s)
Factores de Crecimiento de Fibroblastos/sangre , Enfermedades Inflamatorias del Intestino/inmunología , Insuficiencia Renal Crónica/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Adulto , Animales , Línea Celular , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/inmunología , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/sangre , Interleucina-10/deficiencia , Interleucina-10/genética , Riñón/inmunología , Riñón/patología , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Cultivo Primario de Células , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/patología , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/inmunología
2.
J Cell Mol Med ; 18(11): 2176-88, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25103256

RESUMEN

Novel cardiovascular replacements are being developed by using degradable synthetic scaffolds, which function as a temporary guide to induce neotissue formation directly in situ. Priming of such scaffolds with fast-releasing monocyte chemoattractant protein-1 (MCP-1) was shown to improve the formation of functional neoarteries in rats. However, the underlying mechanism has not been clarified. Therefore, the goal of this study was to investigate the effect of a burst-release of MCP-1 from a synthetic scaffold on the local recruitment of circulating leucocytes under haemodynamic conditions. Herein, we hypothesized that MCP-1 initiates a desired healing cascade by recruiting favourable monocyte subpopulations into the implanted scaffold. Electrospun poly(ε-caprolactone) scaffolds were loaded with fibrin gel containing various doses of MCP-1 and exposed to a suspension of human peripheral blood mononuclear cells in static or dynamic conditions. In standard migration assay, a dose-dependent migration of specific CD14(+) monocyte subsets was observed, as measured by flow cytometry. In conditions of pulsatile flow, on the other hand, a marked increase in immediate monocyte recruitment was observed, but without evident selectivity in monocyte subsets. This suggests that the selectivity was dependent on the release kinetics of the MCP-1, as it was overruled by the effect of shear stress after the initial burst-release. Furthermore, these findings demonstrate that local recruitment of specific MCP-1-responsive monocytes is not the fundamental principle behind the improved neotissue formation observed in long-term in vivo studies, and mobilization of MCP-1-responsive cells from the bone marrow into the bloodstream is suggested to play a predominant role in vivo.


Asunto(s)
Quimiocina CCL2/metabolismo , Vasos Coronarios/crecimiento & desarrollo , Leucocitos Mononucleares/citología , Andamios del Tejido , Implantes Absorbibles , Animales , Recuento de Células , Células Cultivadas , Quimiocina CCL2/química , Vasos Coronarios/citología , Vasos Coronarios/metabolismo , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Poliésteres/química , Ratas
3.
Biomaterials ; 35(18): 4919-28, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24661551

RESUMEN

Implanted synthetic substrates for the regeneration of cardiovascular tissues are exposed to mechanical forces that induce local deformation. Circulating inflammatory cells, actively participating in the healing process, will be subjected to strain once recruited. We investigated the effect of deformation on human peripheral blood mononuclear cells (hPBMCs) adherent onto a scaffold, with respect to macrophage polarization towards an inflammatory (M1) and reparative (M2) phenotype and to early tissue formation. HPBMCs were seeded onto poly-ε-caprolactone bisurea strips and subjected to 0%, 7% and 12% cyclic strain for up to one week. After 1 day, cells subjected to 7% deformation showed upregulated expression of pro and anti-inflammatory chemokines, such as MCP-1 and IL10. Immunostaining revealed presence of inflammatory macrophages in all groups, while immunoregulatory macrophages were detected mainly in the 0 and 7% groups and increased significantly over time. Biochemical assays indicated deposition of sulphated glycosaminoglycans and collagen after 7 days in both strained and unstrained samples. These results suggest that 7% cyclic strain applied to hPBMCs adherent on a scaffold modulates their polarization towards reparative macrophages and allows for early synthesis of extracellular matrix components, required to promote further cell adhesion and proliferation and to bind immunoregulatory cytokines.


Asunto(s)
Forma de la Célula , Macrófagos/citología , Regeneración , Andamios del Tejido , Caproatos/química , Adhesión Celular , Proliferación Celular , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Inmunohistoquímica , Interleucina-10/genética , Interleucina-10/metabolismo , Lactonas/química , Leucocitos Mononucleares/citología , Fenotipo , Cicatrización de Heridas/fisiología
4.
Biomaterials ; 35(33): 9100-13, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25112932

RESUMEN

Mesenchymal stromal cells (MSC) play an important role in natural wound healing via paracrine and juxtacrine signaling to immune cells. The aim of this study was to identify the signaling factors secreted by preseeded cells in a biomaterial and their interaction with circulating leukocytes, in the presence of physiological biomechanical stimuli exerted by the hemodynamic environment (i.e. strain and shear flow). Electrospun poly(ε-caprolactone)-based scaffolds were seeded with human peripheral blood mononuclear cells (PBMC) or MSC. Protein secretion was analyzed under static conditions and cyclic strain. Subsequently, the cross-talk between preseeded cells and circulating leukocytes was addressed by exposing the scaffolds to a suspension of PBMC in static transwells and in pulsatile flow. Our results revealed that PBMC exposed to the scaffold consistently secreted a cocktail of immunomodulatory proteins under all conditions tested. Preseeded MSC, on the other hand, secreted the trophic factors MCP-1, VEGF and bFGF. Furthermore, we observed a synergistic upregulation of CXCL12 gene expression and a synergistic increase in bFGF protein production by preseeded MSC exposed to PBMC in pulsatile flow. These findings identify CXCL12 and bFGF as valuable targets for the development of safe and effective acellular instructive grafts for application in in situ cardiovascular regenerative therapies.


Asunto(s)
Quimiocina CCL2/metabolismo , Quimiocina CXCL12/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Andamios del Tejido/química , Factor A de Crecimiento Endotelial Vascular/metabolismo , Tejido Adiposo/citología , Células Cultivadas , Humanos , Leucocitos Mononucleares/metabolismo , Poliésteres/química , Ingeniería de Tejidos/métodos , Regulación hacia Arriba , Cicatrización de Heridas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA