Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 198(3): 887-898, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23406519

RESUMEN

Phytopathogenic fungi frequently contain dispensable chromosomes, some of which contribute to host range or pathogenicity. In Leptosphaeria maculans, the stem canker agent of oilseed rape (Brassica napus), the minichromosome was previously suggested to be dispensable, without evidence for any role in pathogenicity. Using genetic and genomic approaches, we investigated the inheritance and molecular determinant of an L. maculans-Brassica rapa incompatible interaction. Single gene control of the resistance was found, while all markers located on the L. maculans minichromosome, absent in the virulent parental isolate, co-segregated with the avirulent phenotype. Only one candidate avirulence gene was identified on the minichromosome, validated by complementation experiments and termed AvrLm11. The minichromosome was frequently lost following meiosis, but the frequency of isolates lacking it remained stable in field populations sampled at a 10-yr time interval, despite a yearly sexual stage in the L. maculans life cycle. This work led to the cloning of a new 'lost in the middle of nowhere' avirulence gene of L. maculans, interacting with a B. rapa resistance gene termed Rlm11 and introgressed into B. napus. It demonstrated the dispensability of the L. maculans minichromosome and suggested that its loss generates a fitness deficit.


Asunto(s)
Ascomicetos/genética , Ascomicetos/patogenicidad , Brassica rapa/microbiología , Cromosomas Fúngicos/genética , Genes Fúngicos , Interacciones Huésped-Patógeno/genética , Brassica napus/genética , Brassica napus/microbiología , Brassica rapa/genética , Clonación Molecular , Cruzamientos Genéticos , Resistencia a la Enfermedad/genética , Meiosis , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Virulencia/genética
2.
Front Microbiol ; 10: 2829, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31866989

RESUMEN

The gray mold fungus Botrytis cinerea is a necrotrophic pathogen able to infect hundreds of host plants, including high-value crops such as grapevine, strawberry and tomato. In order to decipher its infectious strategy, a library of 2,144 mutants was generated by random insertional mutagenesis using Agrobacterium tumefaciens-mediated transformation (ATMT). Twelve mutants exhibiting total loss of virulence toward different host plants were chosen for detailed analyses. Their molecular characterization revealed a single T-DNA insertion in different loci. Using a proteomics approach, the secretome of four of these strains was compared to that of the parental strain and a common profile of reduced lytic enzymes was recorded. Significant variations in this profile, notably deficiencies in the secretion of proteases and hemicellulases, were observed and validated by biochemical tests. They were also a hallmark of the remaining eight non-pathogenic strains, suggesting the importance of these secreted proteins in the infection process. In the twelve non-pathogenic mutants, the differentiation of infection cushions was also impaired, suggesting a link between the penetration structures and the secretion of proteins involved in the virulence of the pathogen.

3.
Nat Commun ; 2: 202, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21326234

RESUMEN

Fungi are of primary ecological, biotechnological and economic importance. Many fundamental biological processes that are shared by animals and fungi are studied in fungi due to their experimental tractability. Many fungi are pathogens or mutualists and are model systems to analyse effector genes and their mechanisms of diversification. In this study, we report the genome sequence of the phytopathogenic ascomycete Leptosphaeria maculans and characterize its repertoire of protein effectors. The L. maculans genome has an unusual bipartite structure with alternating distinct guanine and cytosine-equilibrated and adenine and thymine (AT)-rich blocks of homogenous nucleotide composition. The AT-rich blocks comprise one-third of the genome and contain effector genes and families of transposable elements, both of which are affected by repeat-induced point mutation, a fungal-specific genome defence mechanism. This genomic environment for effectors promotes rapid sequence diversification and underpins the evolutionary potential of the fungus to adapt rapidly to novel host-derived constraints.


Asunto(s)
Ascomicetos/genética , Ascomicetos/patogenicidad , Variación Genética , Genoma Fúngico/genética , Filogenia , Mutación Puntual/genética , Factores de Transcripción/genética , Composición de Base/genética , Secuencia de Bases , Biología Computacional , Elementos Transponibles de ADN/genética , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
4.
BMC Res Notes ; 3: 322, 2010 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-21114810

RESUMEN

BACKGROUND: Micro-and minisatellites are among the most powerful genetic markers known to date. They have been used as tools for a large number of applications ranging from gene mapping to phylogenetic studies and isolate typing. However, identifying micro-and minisatellite markers on large sequence data sets is often a laborious process. RESULTS: FONZIE was designed to successively 1) perform a search for markers via the external software Tandem Repeat Finder, 2) exclude user-defined specific genomic regions, 3) screen for the size and the percent matches of each relevant marker found by Tandem Repeat Finder, 4) evaluate marker specificity (i.e., occurrence of the marker as a single copy in the genome) using BLAST2.0, 5) design minisatellite primer pairs via the external software Primer3, and 6) check the specificity of each final PCR product by BLAST. A final file returns to users all the results required to amplify markers. A biological validation of the approach was performed using the whole genome sequence of the phytopathogenic fungus Leptosphaeria maculans, showing that more than 90% of the minisatellite primer pairs generated by the pipeline amplified a PCR product, 44.8% of which showed agarose-gel resolvable polymorphism between isolates. Segregation analyses confirmed that the polymorphic minisatellites corresponded to single-locus markers. CONCLUSION: FONZIE is a stand-alone and user-friendly application developed to minimize tedious manual operations, reduce errors, and speed up the search for efficient minisatellite and microsatellite markers departing from whole-genome sequence data. This pipeline facilitates the integration of data and provides a set of specific primer sequences for PCR amplification of single-locus markers. FONZIE is freely downloadable at: http://www.versailles-grignon.inra.fr/bioger/equipes/leptosphaeria_maculans/outils_d_analyses/fonzie.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA