Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Pathog ; 9(1): e1003123, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23382672

RESUMEN

The major virulence strategy of phytopathogenic bacteria is to secrete effector proteins into the host cell to target the immune machinery. AvrPto and AvrPtoB are two such effectors from Pseudomonas syringae, which disable an overlapping range of kinases in Arabidopsis and Tomato. Both effectors target surface-localized receptor-kinases to avoid bacterial recognition. In turn, tomato has evolved an intracellular effector-recognition complex composed of the NB-LRR protein Prf and the Pto kinase. Structural analyses have shown that the most important interaction surface for AvrPto and AvrPtoB is the Pto P+1 loop. AvrPto is an inhibitor of Pto kinase activity, but paradoxically, this kinase activity is a prerequisite for defense activation by AvrPto. Here using biochemical approaches we show that disruption of Pto P+1 loop stimulates phosphorylation in trans, which is possible because the Pto/Prf complex is oligomeric. Both P+1 loop disruption and transphosphorylation are necessary for signalling. Thus, effector perturbation of one kinase molecule in the complex activates another. Hence, the Pto/Prf complex is a sophisticated molecular trap for effectors that target protein kinases, an essential aspect of the pathogen's virulence strategy. The data presented here give a clear view of why bacterial virulence and host recognition mechanisms are so often related and how the slowly evolving host is able to keep pace with the faster-evolving pathogen.


Asunto(s)
Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Solanum lycopersicum/metabolismo , Bacterias/patogenicidad , Proteínas Bacterianas , Resistencia a la Enfermedad/inmunología , Interacciones Huésped-Patógeno , Solanum lycopersicum/inmunología , Solanum lycopersicum/microbiología , Fosforilación , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Transducción de Señal , Virulencia
2.
PLoS Biol ; 9(7): e1001094, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21750662

RESUMEN

Biotrophic eukaryotic plant pathogens require a living host for their growth and form an intimate haustorial interface with parasitized cells. Evolution to biotrophy occurred independently in fungal rusts and powdery mildews, and in oomycete white rusts and downy mildews. Biotroph evolution and molecular mechanisms of biotrophy are poorly understood. It has been proposed, but not shown, that obligate biotrophy results from (i) reduced selection for maintenance of biosynthetic pathways and (ii) gain of mechanisms to evade host recognition or suppress host defence. Here we use Illumina sequencing to define the genome, transcriptome, and gene models for the obligate biotroph oomycete and Arabidopsis parasite, Albugo laibachii. A. laibachii is a member of the Chromalveolata, which incorporates Heterokonts (containing the oomycetes), Apicomplexa (which includes human parasites like Plasmodium falciparum and Toxoplasma gondii), and four other taxa. From comparisons with other oomycete plant pathogens and other chromalveolates, we reveal independent loss of molybdenum-cofactor-requiring enzymes in downy mildews, white rusts, and the malaria parasite P. falciparum. Biotrophy also requires "effectors" to suppress host defence; we reveal RXLR and Crinkler effectors shared with other oomycetes, and also discover and verify a novel class of effectors, the "CHXCs", by showing effector delivery and effector functionality. Our findings suggest that evolution to progressively more intimate association between host and parasite results in reduced selection for retention of certain biosynthetic pathways, and particularly reduced selection for retention of molybdopterin-requiring biosynthetic pathways. These mechanisms are not only relevant to plant pathogenic oomycetes but also to human pathogens within the Chromalveolata.


Asunto(s)
Arabidopsis/parasitología , Oomicetos/genética , Enfermedades de las Plantas/parasitología , Arabidopsis/genética , Secuencia de Bases , Evolución Biológica , Genes , Genoma , Interacciones Huésped-Patógeno , Oomicetos/crecimiento & desarrollo , Oomicetos/metabolismo , Simbiosis/genética
3.
Nat Commun ; 14(1): 2568, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142566

RESUMEN

In both plants and animals, nucleotide-binding leucine-rich repeat (NLR) immune receptors play critical roles in pathogen recognition and activation of innate immunity. In plants, NLRs recognise pathogen-derived effector proteins and initiate effector-triggered immunity (ETI). However, the molecular mechanisms that link NLR-mediated effector recognition and downstream signalling are not fully understood. By exploiting the well-characterised tomato Prf/Pto NLR resistance complex, we identified the 14-3-3 proteins TFT1 and TFT3 as interacting partners of both the NLR complex and the protein kinase MAPKKKα. Moreover, we identified the helper NRC proteins (NLR-required for cell death) as integral components of the Prf /Pto NLR recognition complex. Notably our studies revealed that TFTs and NRCs interact with distinct modules of the NLR complex and, following effector recognition, dissociate facilitating downstream signalling. Thus, our data provide a mechanistic link between activation of immune receptors and initiation of downstream signalling cascades.


Asunto(s)
Solanum lycopersicum , Animales , Proteínas , Transducción de Señal , Inmunidad Innata , Plantas/metabolismo , Receptores Inmunológicos , Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas
4.
Plant J ; 61(3): 507-18, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19919571

RESUMEN

Cytoplasmic recognition of pathogen virulence effectors by plant NB-LRR proteins leads to strong induction of defence responses termed effector triggered immunity (ETI). In tomato, a protein complex containing the NB-LRR protein Prf and the protein kinase Pto confers recognition of the Pseudomonas syringae effectors AvrPto and AvrPtoB. Although structurally unrelated, AvrPto and AvrPtoB interact with similar residues in the Pto catalytic cleft to activate ETI via an unknown mechanism. Here we show that the Prf complex is oligomeric, containing at least two molecules of Prf. Within the complex, Prf can associate with Pto or one of several Pto family members including Fen, Pth2, Pth3, or Pth5. The dimerization surface for Prf is the novel N-terminal domain, which also coordinates an intramolecular interaction with the remainder of the molecule, and binds Pto kinase or a family member. Thus, association of two Prf N-terminal domains brings the associated kinases into close promixity. Tomato lines containing Prf complexed with Pth proteins but not Pto possessed greater immunity against P. syringae than tomatoes lacking Prf. This demonstrates that incorporation of non-Pto kinases into the Prf complex extends the number of effector proteins that can be recognized.


Asunto(s)
Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Solanum lycopersicum/metabolismo , Secuencia de Aminoácidos , Inmunoprecipitación , Solanum lycopersicum/genética , Solanum lycopersicum/inmunología , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Unión Proteica , Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/química
5.
Mol Plant Microbe Interact ; 22(4): 391-401, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19271954

RESUMEN

Tomato Prf encodes a nucleotide-binding domain shared by Apaf-1, certain R proteins, and CED-4 fused to C-terminal leucine-rich repeats (NBARC-LRR) protein that is required for bacterial immunity to Pseudomonas syringae and sensitivity to the organophosphate fenthion. The signaling pathways involve two highly related protein kinases. Pto kinase mediates direct recognition of the bacterial effector proteins AvrPto or AvrPtoB. Fen kinase is required for fenthion sensitivity and recognition of bacterial effectors related to AvrPtoB. The role of Pto and its association with Prf has been characterized but Fen is poorly described. We show that, similar to Pto, Fen requires N-myristoylation and kinase activity for signaling and interacts with the N-terminal domain of Prf. Thus, the mechanisms of activation of Prf by the respective protein kinases are similar. Prf-Fen interaction is underlined by coregulatory mechanisms in which Prf negatively regulates Fen, most likely by controlling kinase activity. We further characterized negative regulation of Prf by Pto, and show that regulation is mediated by the previously described negative regulatory patch. Remarkably, the effectors released negative regulation of Prf in a manner dependent on Pto kinase activity. The data suggest a model in which Prf associates generally with Pto-like kinases in tightly regulated complexes, which are activated by effector-mediated disruption of negative regulation. Release of negative regulation may be a general feature of activation of NBARC-LRR proteins by cognate effectors.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Solanum lycopersicum/enzimología , Solanum lycopersicum/genética , Mutación , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Pseudomonas syringae , Transducción de Señal
6.
Elife ; 42015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25723966

RESUMEN

How generalist parasites with wide host ranges can evolve is a central question in parasite evolution. Albugo candida is an obligate biotrophic parasite that consists of many physiological races that each specialize on distinct Brassicaceae host species. By analyzing genome sequence assemblies of five isolates, we show they represent three races that are genetically diverged by ∼1%. Despite this divergence, their genomes are mosaic-like, with ∼25% being introgressed from other races. Sequential infection experiments show that infection by adapted races enables subsequent infection of hosts by normally non-infecting races. This facilitates introgression and the exchange of effector repertoires, and may enable the evolution of novel races that can undergo clonal population expansion on new hosts. We discuss recent studies on hybridization in other eukaryotes such as yeast, Heliconius butterflies, Darwin's finches, sunflowers and cichlid fishes, and the implications of introgression for pathogen evolution in an agro-ecological environment.


Asunto(s)
Genoma , Especificidad del Huésped , Inmunidad , Oomicetos/genética , Oomicetos/fisiología , Parásitos/genética , Parásitos/fisiología , Alelos , Animales , ADN de Plantas/metabolismo , Nucleótidos/genética , Oomicetos/aislamiento & purificación , Oomicetos/patogenicidad , Parásitos/aislamiento & purificación , Parásitos/patogenicidad , Filogenia , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Recombinación Genética/genética , Alineación de Secuencia , Virulencia/genética
7.
J Vis Exp ; (84): e51095, 2014 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-24637539

RESUMEN

Plants adapt quickly to changing environments due to elaborate perception and signaling systems. During pathogen attack, plants rapidly respond to infection via the recruitment and activation of immune complexes. Activation of immune complexes is associated with post-translational modifications (PTMs) of proteins, such as phosphorylation, glycosylation, or ubiquitination. Understanding how these PTMs are choreographed will lead to a better understanding of how resistance is achieved. Here we describe a protein purification method for nucleotide-binding leucine-rich repeat (NB-LRR)-interacting proteins and the subsequent identification of their post-translational modifications (PTMs). With small modifications, the protocol can be applied for the purification of other plant protein complexes. The method is based on the expression of an epitope-tagged version of the protein of interest, which is subsequently partially purified by immunoprecipitation and subjected to mass spectrometry for identification of interacting proteins and PTMs. This protocol demonstrates that: i). Dynamic changes in PTMs such as phosphorylation can be detected by mass spectrometry; ii). It is important to have sufficient quantities of the protein of interest, and this can compensate for the lack of purity of the immunoprecipitate; iii). In order to detect PTMs of a protein of interest, this protein has to be immunoprecipitated to get a sufficient quantity of protein.


Asunto(s)
Inmunoprecipitación/métodos , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/aislamiento & purificación , Proteínas de Arabidopsis/metabolismo , Centrifugación/métodos , Proteínas de Plantas/aislamiento & purificación
8.
Science ; 324(5928): 784-7, 2009 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-19423826

RESUMEN

Plant pathogenic bacteria secrete effector proteins that attack the host signaling machinery to suppress immunity. Effectors can be recognized by hosts leading to immunity. One such effector is AvrPtoB of Pseudomonas syringae, which degrades host protein kinases, such as tomato Fen, through an E3 ligase domain. Pto kinase, which is highly related to Fen, recognizes AvrPtoB in conjunction with the resistance protein Prf. Here we show that Pto is resistant to AvrPtoB-mediated degradation because it inactivates the E3 ligase domain. AvrPtoB ubiquitinated Fen within the catalytic cleft, leading to its breakdown and loss of the associated Prf protein. Pto avoids this by phosphorylating and inactivating the AvrPtoB E3 domain. Thus, inactivation of a pathogen virulence molecule is one mechanism by which plants resist disease.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Pseudomonas syringae/patogenicidad , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Inmunidad Innata , Solanum lycopersicum/genética , Proteínas Mutantes/metabolismo , Fosforilación , Enfermedades de las Plantas/inmunología , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Estructura Terciaria de Proteína , Pseudomonas syringae/genética , Pseudomonas syringae/crecimiento & desarrollo , Pseudomonas syringae/metabolismo , Transducción de Señal , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Factores de Virulencia/antagonistas & inhibidores , Factores de Virulencia/metabolismo
9.
Plant J ; 51(6): 978-90, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17635766

RESUMEN

The Pto gene of tomato (Solanum lycopersicum) confers specific recognition of the unrelated bacterial effector proteins AvrPto and AvrPtoB. Pto resides in a constitutive molecular complex with the nucleotide binding site-leucine rich repeats protein Prf. Prf is absolutely required for specific recognition of both effectors. Here, using stable transgenic lines, we show that expression of Pto from its genomic promoter in susceptible tomatoes was sufficient to complement recognition of Pseudomonas syringae pv. tomato (Pst) bacteria expressing either avrPto or avrPtoB. Pto kinase activity was absolutely required for specific immunity. Expression of the Pto N-myristoylation mutant, pto(G2A), conferred recognition of Pst (avrPtoB), but not Pst (avrPto), although bacterial growth in these lines was intermediate between resistant and susceptible lines. Overexpression of pto(G2A) complemented recognition of avrPto. Transgenic tomato plants overexpressing wild-type Pto exhibited constitutive growth phenotypes, but these were absent in lines overexpressing pto(G2A). Therefore, Pto myristoylation is a quantitative factor for effector recognition in tomato, but is absolutely required for overexpression phenotypes. Native expression of Pto in the heterologous species Nicotiana benthamiana did not confer resistance to P. syringae pv. tabaci (Pta) expressing avrPto or avrPtoB, but recognition of both effectors was complemented by Prf co-expression. Thus, specific resistance conferred solely by Pto in N. benthamiana is an artefact of overexpression. Finally, pto(G2A) did not confer recognition of either avrPto or avrPtoB in N. benthamiana, regardless of the presence of Prf. Thus, co-expression of Prf in N. benthamiana complements many but not all aspects of normal Pto function.


Asunto(s)
Nicotiana/genética , Proteínas de Plantas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Solanum lycopersicum/genética , Proteínas Bacterianas/metabolismo , Inmunidad Innata , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Pseudomonas syringae/metabolismo , Pseudomonas syringae/fisiología , Nicotiana/metabolismo , Nicotiana/microbiología
10.
Plant Cell ; 18(10): 2792-806, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17028203

RESUMEN

Immunity in tomato (Solanum lycopersicum) to Pseudomonas syringae bacteria expressing the effector proteins AvrPto and AvrPtoB requires both Pto kinase and the NBARC-LRR (for nucleotide binding domain shared by Apaf-1, certain R gene products, and CED-4 fused to C-terminal leucine-rich repeats) protein Prf. Pto plays a direct role in effector recognition within the host cytoplasm, but the role of Prf is unknown. We show that Pto and Prf are coincident in the signal transduction pathway that controls ligand-independent signaling. Pto and Prf associate in a coregulatory interaction that requires Pto kinase activity and N-myristoylation for signaling. Pto interacts with a unique Prf N-terminal domain outside of the NBARC-LRR domain and resides in a high molecular weight recognition complex dependent on the presence of Prf. In this complex, both Pto and Prf contribute to specific recognition of AvrPtoB. The data suggest that the role of Pto is confined to the regulation of Prf and that the bacterial effectors have evolved to target this coregulatory molecular switch.


Asunto(s)
Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Solanum lycopersicum/metabolismo , Secuencia de Bases , Cartilla de ADN , Solanum lycopersicum/enzimología , Solanum lycopersicum/inmunología , Solanum lycopersicum/microbiología , Datos de Secuencia Molecular , Peso Molecular , Unión Proteica , Pseudomonas syringae/patogenicidad , Transducción de Señal , Nicotiana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA