Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hear Res ; 434: 108782, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37201272

RESUMEN

Description of the ear canal's geometry is essential for describing peripheral sound flow, yet physical measurements of the canal's geometry are lacking and recent measurements suggest that older-adult-canal areas are systematically larger than previously assumed. Methods to measure ear-canal geometry from multi-planar reconstructions of high-resolution CT images were developed and applied to 66 ears from 47 subjects, ages 18-90 years. The canal's termination, central axis, entrance, and first bend were identified based on objective definitions, and the canal's cross-sectional area was measured along its canal's central axis in 1-2 mm increments. In general, left and right ears from a given subject were far more similar than measurements across subjects, where areas varied by factors of 2-3 at many locations. The canal areas varied systematically with age cohort at the first-bend location, where canal-based measurement probes likely sit; young adults (18-30 years) had an average area of 44mm2 whereas older adults (61-90 years) had a significantly larger average area of 69mm2. Across all subjects ages 18-90, measured means ± standard deviations included: canals termination area at the tympanic annulus 56±8mm2; area at the canal's first bend 53±18mm2; area at the canal's entrance 97±24mm2; and canal length 31.4±3.1mm2.


Asunto(s)
Conducto Auditivo Externo , Oído Medio , Adulto Joven , Humanos , Anciano , Conducto Auditivo Externo/diagnóstico por imagen , Sonido , Membrana Timpánica , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA