Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Stem Cells ; 36(8): 1179-1197, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29575325

RESUMEN

During aging-one the most potent risk factors for Parkinson's disease (PD)-both astrocytes and microglia undergo functional changes that ultimately hamper homoeostasis, defense, and repair of substantia nigra pars compacta (SNpc) midbrain dopaminergic (mDA) neurons. We tested the possibility of rejuvenating the host microenvironment and boosting SNpc DA neuronal plasticity via the unilateral transplantation of syngeneic neural stem/progenitor cells (NSCs) in the SNpc of aged mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced experimental PD. Transplanted NSCs within the aged SNpc engrafted and migrated in large proportions to the tegmental aqueduct mDA niche, with 30% acquiring an astroglial phenotype. Both graft-derived exogenous (ex-Astro) and endogenous astrocytes (en-Astro) expressed Wnt1. Both ex-Astro and en-Astro were key triggers of Wnt/ß-catenin signaling in SNpc-mDA neurons and microglia, which was associated with mDA neurorescue and immunomodulation. At the aqueduct-ventral tegmental area level, NSC grafts recapitulated a genetic Wnt1-dependent mDA developmental program, inciting the acquisition of a mature Nurr1+ TH+ neuronal phenotype. Wnt/ß-catenin signaling antagonism abolished mDA neurorestoration and immune modulatory effects of NSC grafts. Our work implicates an unprecedented therapeutic potential for somatic NSC grafts in the restoration of mDA neuronal function in the aged Parkinsonian brain. Stem Cells 2018;36:1179-1197.


Asunto(s)
Envejecimiento/patología , Astrocitos/patología , Encéfalo/patología , Células-Madre Neurales/trasplante , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Vía de Señalización Wnt , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Astrocitos/metabolismo , Muerte Celular , Diferenciación Celular/genética , Linaje de la Célula , Proliferación Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Regulación hacia Abajo/genética , Genes del Desarrollo , Inflamación/genética , Inflamación/patología , Mediadores de Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Células-Madre Neurales/citología , Estrés Oxidativo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sustancia Negra/patología , Sinaptosomas/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Vía de Señalización Wnt/genética
2.
J Neurosci ; 35(27): 10088-100, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26157006

RESUMEN

Cortical reorganization occurring in multiple sclerosis (MS) patients is thought to play a key role in limiting the effect of structural tissue damage. Conversely, its exhaustion may contribute to the irreversible disability that accumulates with disease progression. Several aspects of MS-related cortical reorganization, including the overall functional effect and likely modulation by therapies, still remain to be elucidated. The aim of this work was to assess the extent of functional cortical reorganization and its brain structural/pathological correlates in Dark Agouti rats with experimental autoimmune encephalomyelitis (EAE), a widely accepted preclinical model of chronic MS. Morphological and functional MRI (fMRI) were performed before disease induction and during the relapsing and chronic phases of EAE. During somatosensory stimulation of the right forepaw, fMRI demonstrated that cortical reorganization occurs in both relapsing and chronic phases of EAE with increased activated volume and decreased laterality index versus baseline values. Voxel-based morphometry demonstrated gray matter (GM) atrophy in the cerebral cortex, and both GM and white matter atrophy were assessed by ex vivo pathology of the sensorimotor cortex and corpus callosum. Neuroinflammation persisted in the relapsing and chronic phases, with dendritic spine density in the layer IV sensory neurons inversely correlating with the number of cluster of differentiation 45-positive inflammatory lesions. Our work provides an innovative experimental platform that may be pivotal for the comprehension of key mechanisms responsible for the accumulation of irreversible brain damage and for the development of innovative therapies to reduce disability in EAE/MS. SIGNIFICANCE STATEMENT: Since the early 2000s, functional MRI (fMRI) has demonstrated profound modifications in the recruitment of cortical areas during motor, cognitive, and sensory tasks in multiple sclerosis (MS) patients. Experimental autoimmune encephalomyelitis (EAE) represents a reliable model of the chronic-progressive variant of MS. fMRI studies in EAE have not been performed extensively up to now. This paper reports fMRI studies in a rat model of MS with somatosensory stimulation of the forepaw. We demonstrated modifications in the recruitment of cortical areas consistent with data from MS patients. To the best of our knowledge, this is the first report of cortical remodeling in a preclinical in vivo model of MS.


Asunto(s)
Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/patología , Encefalomielitis Autoinmune Experimental/patología , Imagen por Resonancia Magnética , Vías Aferentes/fisiología , Animales , Cuerpo Calloso/patología , Citocinas/metabolismo , Dendritas/metabolismo , Dendritas/patología , Modelos Animales de Enfermedad , Estimulación Eléctrica , Miembro Posterior/inervación , Procesamiento de Imagen Asistido por Computador , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Neuronas/ultraestructura , Oxígeno/sangre , Ratas
3.
Cell Stem Cell ; 22(3): 355-368.e13, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29478844

RESUMEN

Neural stem cell (NSC) transplantation can influence immune responses and suppress inflammation in the CNS. Metabolites, such as succinate, modulate the phenotype and function of immune cells, but whether and how NSCs are also activated by such immunometabolites to control immunoreactivity and inflammatory responses is unclear. Here, we show that transplanted somatic and directly induced NSCs ameliorate chronic CNS inflammation by reducing succinate levels in the cerebrospinal fluid, thereby decreasing mononuclear phagocyte (MP) infiltration and secondary CNS damage. Inflammatory MPs release succinate, which activates succinate receptor 1 (SUCNR1)/GPR91 on NSCs, leading them to secrete prostaglandin E2 and scavenge extracellular succinate with consequential anti-inflammatory effects. Thus, our work reveals an unexpected role for the succinate-SUCNR1 axis in somatic and directly induced NSCs, which controls the response of stem cells to inflammatory metabolic signals released by type 1 MPs in the chronically inflamed brain.


Asunto(s)
Sistema Nervioso Central/patología , Inflamación/patología , Macrófagos/metabolismo , Células-Madre Neurales/citología , Ácido Succínico/metabolismo , Animales , Línea Celular , Enfermedad Crónica , Dinoprostona/metabolismo , Femenino , Humanos , Ratones Endogámicos C57BL , Células-Madre Neurales/trasplante , Fosforilación Oxidativa , Receptores Acoplados a Proteínas G/metabolismo , Ácido Succínico/líquido cefalorraquídeo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA