Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Immunol ; 53(12): e2250103, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37194594

RESUMEN

Since the postulation of the "missing-self" concept, much progress has been made in defining requirements for NK-cell activation. Unlike T lymphocytes that process signals from receptors in a hierarchic manner dominated by the T-cell receptors, NK cells integrate receptor signals more "democratically." Signals originate not only the downstream of cell-surface receptors triggered by membrane-bound ligands or cytokines, but are also mediated by specialized microenvironmental sensors that perceive the cellular surrounding by detecting metabolites or the availability of oxygen. Thus, NK-cell effector functions are driven in an organ and disease-dependent manner. Here, we review the latest findings on how NK-cell reactivity in cancer is determined by the reception and integration of complex signals. Finally, we discuss how this knowledge can be exploited to guide novel combinatorial approaches for NK-cell-based anticancer therapies.


Asunto(s)
Células Asesinas Naturales , Neoplasias , Humanos , Células Asesinas Naturales/metabolismo , Neoplasias/terapia , Citocinas/metabolismo , Linfocitos T/metabolismo , Inmunoterapia
2.
J Immunother Cancer ; 12(9)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39266214

RESUMEN

BACKGROUND: Immunotherapies for malignant melanoma are challenged by the resistance developed in a significant proportion of patients. Myeloid-derived suppressor cells (MDSC), with their ability to inhibit antitumor T-cell responses, are a major contributor to immunosuppression and resistance to immune checkpoint therapies in melanoma. Damage-associated molecular patterns S100A8, S100A9, and HMGB1, acting as toll like receptor 4 (TLR4) and receptor for advanced glycation endproducts (RAGE) ligands, are highly expressed in the tumor microenvironment and drive MDSC activation. However, the role of TLR4 and RAGE signaling in the acquisition of MDSC immunosuppressive properties remains to be better defined. Our study investigates how the signaling via TLR4 and RAGE as well as their ligands S100A9 and HMGB1, shape MDSC-mediated immunosuppression in melanoma. METHODS: MDSC were isolated from the peripheral blood of patients with advanced melanoma or generated in vitro from healthy donor-derived monocytes. Monocytes were treated with S100A9 or HMGB1 for 72 hours. The immunosuppressive capacity of treated monocytes was assessed in the inhibition of T-cell proliferation assay in the presence or absence of TLR4 and RAGE inhibitors. Plasma levels of S100A8/9 and HMGB1 were quantified by ELISA. Single-cell RNA sequencing (scRNA-seq) was performed on monocytes from patients with melanoma and healthy donors. RESULTS: We showed that exposure to S100A9 and HMGB1 converted healthy donor-derived monocytes into MDSC through TLR4 signaling. Our scRNA-seq data revealed in patient monocytes enriched inflammatory genes, including S100 and those involved in NF-κB and TLR4 signaling, and a reduced major histocompatibility complex II gene expression. Furthermore, elevated plasma S100A8/9 levels correlated with shorter progression-free survival in patients with melanoma. CONCLUSIONS: These findings highlight the critical role of TLR4 and, to a lesser extent, RAGE signaling in the conversion of monocytes into MDSC-like cells, underscore the potential of targeting S100A9 to prevent this conversion, and highlight the prognostic value of S100A8/9 as a plasma biomarker in melanoma.


Asunto(s)
Calgranulina B , Proteína HMGB1 , Melanoma , Células Supresoras de Origen Mieloide , Transducción de Señal , Receptor Toll-Like 4 , Humanos , Calgranulina B/metabolismo , Receptor Toll-Like 4/metabolismo , Proteína HMGB1/metabolismo , Melanoma/inmunología , Melanoma/metabolismo , Melanoma/tratamiento farmacológico , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Masculino , Femenino , Microambiente Tumoral/inmunología , Persona de Mediana Edad , Tolerancia Inmunológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA