Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(4): 2174-2188, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37934133

RESUMEN

BACKGROUND: In Sicilian calcareous soils, red wines often display unripeness and bitterness features. To enhance wine quality, we employed the 'sur lies élevage' technique, involving prolonged contact of dead yeast cells with the wine to favor the extraction of yeast cellular components through cell lysis. The 7 month treatment utilized two types of Chardonnay lies: fresh and previously matured. To overcome challenges in retrieving lies from red winemaking, we have recovered the lies from a white winemaking. Additionally, the lies underwent a preliminary passage on a red wine to minimize color adsorption on yeast cell walls. RESULTS: The sur lies treatment effectively reduced astringency, bitterness, and brown pigment in wines, with partial removal of red color. It successfully eliminated quercetin aglycone and induced remarkable changes in the aromatic profile, showing increased ethyl esters and relative fatty acids. Sensory evaluations revealed sur lies-treated wines had fruitier and more complex characteristics compared to untreated wines. Matured lies had a greater impact on enhancing fruitiness than fresh lies. CONCLUSIONS: The treatments mitigated the unripeness and bitterness of studied wines. Sur lies treatment improved the aromatic profile, leading to fruitier and more complex notes, enhancing overall sensory quality. Matured lies showed greater efficacy in elevating fruitiness than fresh lies. These findings highlight the value of the sur lies technique in enhancing the quality and sensory attributes of Nero d'Avola and Syrah wines from Sicilian calcareous soils. © 2023 Society of Chemical Industry.


Asunto(s)
Vitis , Vino , Vino/análisis , Suelo , Saccharomyces cerevisiae , Gusto , Quercetina
2.
Food Chem ; 461: 140816, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39151344

RESUMEN

In this study, the metabolome of different types of tea (i.e., black, green and earl grey) is explored by means of HRMAS 1H (i.e., semisolid state) NMR and CPMAS 13C (i.e., solid state) NMR spectroscopies. By elaborating the metabolomic data with unsupervised and supervised chemometric tools (PCA, PLS-DA), it was possible to set up classification models with the aim to discriminate the different types of tea as based on differences in their chemical composition. Both the applications of the NMR spectroscopies also allowed to obtain information about the metabolic biomarkers leading the differentiation among teas. These were mainly represented by phenolic compounds. Also, some non-phenolic compounds, such as amino acids, carbohydrates, and terpenoids, played important roles in shaping tea quality. The findings of this study provided useful insights into the application of solid and semisolid state NMR spectroscopies, in combination with chemometrics, in the context of food authentication and traceability.


Asunto(s)
Camellia sinensis , Metabolómica , , Té/química , Camellia sinensis/química , Camellia sinensis/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Quimiometría , Fenoles/análisis , Fenoles/metabolismo , Fenoles/química , Extractos Vegetales/química , Extractos Vegetales/metabolismo
3.
Food Chem ; 443: 138521, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280367

RESUMEN

In this study, the effects of the main soil chemical-physical parameters (i.e. texture, pH, total carbonates, cation exchange capacity, electric conductivity, organic matter and mineral endowment) on proanthocyanidin composition of Nero d'Avola red wines and Grillo white wines were investigated. Monomer proanthocyanidins (i.e. (+)-catechin and (-)-epicatechin) and oligomer proanthocyanidins (i.e. B1, B2, B3 and B4 dimers and C1 trimer), as well as proanthocyanidins subunit composition, percentage of galloylation, percentage of prodelphinidins and mean degree of polymerization, were studied for each wine. Results highlighted that the proanthocyanidins composition of both red and white wines is greatly affected by soil. In particular, the proanthocyanidins composition of Nero d'Avola red wines appeared to be affected by the soil physical-chemical parameters related to nutrients dynamics (CEC, EC, pH, organic matter, mineral endowment), whereas the proanthocyanidins composition of Grillo white wines was mainly influenced by the soil texture, that modulates soil water dynamics.


Asunto(s)
Catequina , Proantocianidinas , Vitis , Vino , Vino/análisis , Vitis/química , Proantocianidinas/análisis , Suelo , Catequina/análisis , Minerales
4.
J Agric Food Chem ; 71(14): 5823-5835, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36940311

RESUMEN

In this study, the soil effect on the micro-component composition of Nero d'Avola wines obtained from different locations was investigated through 1H NMR-based metabolomics. Two different approaches were applied: the targeted (TA) and the non-targeted one (NTA). The former differentiated the wines by profiling (i.e., by identifying and quantifying) a number of different metabolites. The latter provided wine fingerprinting by processing the entire spectra with multivariate statistical analysis. NTA also allowed investigation of the hydrogen bond network inside wines via the analysis of 1H NMR chemical shift dispersions. Results showed that the differences among wines were due not only to the concentrations of various analytes but also to the characteristics of the H-bond network where different solutes were involved. The H-bond network affects both gustatory and olfactory perceptions by modulating the way how solutes interact with the human sensorial receptors. Moreover, the aforementioned H-bond network is also related to the soil properties from which the grapes were taken. Therefore, the present study can be considered a good attempt to investigate terroir, i.e., the relationship between wine quality and soil characteristics.


Asunto(s)
Vitis , Vino , Humanos , Vino/análisis , Espectroscopía de Protones por Resonancia Magnética , Suelo , Vitis/química , Espectroscopía de Resonancia Magnética/métodos
5.
Foods ; 9(5)2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455680

RESUMEN

A dehydration experiment was carried out on Vitis vinifera L. cv Muscat of Alexandria (synonym Zibibbo) following the process for the production of renowned special dessert wines produced on Pantelleria island (Sicily, Italy). Harvested berries were pre-treated in a sodium hydroxide dipping solution (45 g/L, dipped for 185 s, 25 °C) to accelerate the drying process, rinsed, and dehydrated in simulated conditions (relative humidity 30%, 30 °C temperature, air speed 0.9 m/s). Three dehydration levels were achieved, corresponding to "Passolata", "Bionda", and "Malaga" stages (35%, 50%, and 65% of weight loss, respectively) of the Pantelleria denomination of origin (DOC). Grape skin mechanical properties, technological parameters, phenolics, and aroma profile varied considerably during dehydration. The most important aroma compounds for their olfactory impact, such as linalool, geraniol, nerol, and citronellol, especially in glycosylated forms, significantly increased in dried grapes compared to fresh ones, even if aroma profile modification occurred. A decrease in break skin force could have induced higher release of flavonoids. The findings showed relevant changes, allowing winemakers to better select the ratio of fresh and dehydrated grapes in the function of the final desired wine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA