Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Clin Exp Immunol ; 12(6): 153-163, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38187363

RESUMEN

Currently, hepatitis C virus (HCV) infects nearly 3% of the global population, the majority of whom are chronically infected; however, hepatitis C vaccines are still in the developmental stage. Numerous studies suggest that the spontaneous resolution of HCV infection and the design of its vaccine are reliant on vital contributions from CTL cell responses and T regulatory cells. Multiple researchers have identified both Core and nonstructural protein 3 (NS3) proteins as crucial immune genes and potential candidates for HCV DNA vaccine design. In this study, Core and NS3 were subcloned and inserted into pcDNA3.1 to construct HCV DNA vaccines administered in mouse models. Furthermore, the effects of Core and NS3 on the induction of CTL and NK were compared in spleen mouse models using the LDH method. Additionally, flow cytometry was employed to investigate the percentage of T regulatory cells (Treg cells) and cells expressing PD-1 in the spleens of the mouse models. Our data indicated that pcDNA3.1+NS3 and pcDNA3.1+Core could enhance CTL and NK activity in mouse models. Importantly, the Treg and PD-1 analysis in mouse models revealed a substantial reduction in the proportions of CD4+/CD25+/Foxp3+ T cells and PD-1+ cells in experimental subjects treated with HCV NS3 along with 5 mg/kg of lenalidomide, utilized as a novel adjuvant, compared to those administered an equivalent dosage of lenalidomide in conjunction with HCV Core. In conclusion, our observations indicated that the NS3-HCV gene had a limited impact on the activation of inhibitory factors. Therefore, NS3 is considered a more suitable candidate for DNA vaccine design compared to Core HCV.

2.
Iran J Microbiol ; 15(6): 803-810, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38156306

RESUMEN

Background and Objectives: Coronavirus disease 2019 (COVID-19) pandemic has affected most countries in the world. Monitoring the humoral immune responses during the natural course of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection and the duration of them provide useful information for the development of vaccination strategies against this virus and its emerging variants. The importance of the antibody response especially neutralizing antibodies in long-term immunity to SARS-CoV-2 is significant. Materials and Methods: The present study is a cross-sectional study of sero-epidemiological type that has been proposed to compare the persistence of Immunoglobulin G (IgG) against N (nucleocapsid), S (spike) and RBD (receptor-binding domain) proteins in the community after the time of primary disease. A total of 652 serum samples were collected from hospital staff working in COVID wards, as well as a number of community members with different occupations, among those with positive antibody titers, 86 participated in the resampling test before vaccination. Results: There was no association between antibody titer and disease severity (p>0.05). A significant decrease in Ab levels was observed in the paired second samples. The highest rate of decrease was related to anti-N, then anti-RBD and anti-S IgG levels, respectively. There is a significant relationship between the initial antibody titer and its reduction over time (p-value <0.05). Conclusion: Our data revealed that humoral immunity following natural infection of SARS-CoV-2 is detectable for at least 4 months, regardless of disease severity. The most decrease in antibody titer over time was related to anti-N IgG levels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA