Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Semin Cancer Biol ; 80: 306-339, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-32610149

RESUMEN

Despite significant advancements made in the treatment of cancer during the past several decades, it remains one of the leading causes of death worldwide killing approximately 9.6 million people annually. The major challenge for therapeutic success is the development of chemoresistance in cancer cells against conventional chemotherapeutic agents via modulation of numerous survival and oncogenic signaling pathways. Therefore, sensitization of cancer cells to conventional drugs using multitargeted agents that suppress the survival and oncogenic pathways, in single or in combination, is an emerging strategy to overcome drug-resistance. During the last couple of decades, phytochemicals such as curcumin, resveratrol, tocotrienol and quercetin have emerged as potential chemosensitizing agents in cancer cells due to their less toxic and multitargeted properties. Numerous preclinical and clinical studies enumerated their potential to prevent drug resistance and sensitize cancer cells to chemotherapeutic agents by modulating several genes/proteins or pathways that regulate the key factors during the growth and progression of tumors such as inhibition of anti-apoptotic proteins, activation of pro-apoptotic proteins, reduced expression of different transcription factors, chemokines, enzymes, cell adhesion molecules, protein tyrosine kinases and cell cycle regulators. Therefore, natural chemosensitizing agents will have a special place in cancer treatment in the near future. This comprehensive review summarizes data obtained from various in vitro, in vivo and clinical studies to provide a new perspective for the application of agents obtained from "Mother Nature" as potential chemosensitizers for further cancer drug research and development.


Asunto(s)
Antineoplásicos , Curcumina , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Curcumina/farmacología , Curcumina/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Transducción de Señal
2.
Phytother Res ; 36(5): 1854-1883, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35102626

RESUMEN

The medicinal plant Scutellaria baicalensis, commonly known as Chinese skullcap or Huang-Qin, has been used as a traditional medicine for several thousand years. The roots of this plant contain bioactive compounds, such as wogonin (WOG), wogonoside, baicalein, and baicalin. The aim of this article is to evaluate the therapeutic potential and mechanisms of action of WOG against different cancers. Numerous in vitro and in vivo studies have revealed that WOG exerts immense therapeutic potential against bladder cancer, breast cancer, cholangiocarcinoma, cervical cancer, colorectal cancer, gallbladder cancer, gastric cancer, glioblastoma, head and neck cancer, hepatic cancer, leukemia, lung cancer, lymphoma, melanoma, multiple myeloma, neuroblastoma, osteosarcoma, ovarian cancer, pancreatic cancer, prostate cancer, and renal cancer by regulating various cell signaling pathways. WOG, in combination with established chemotherapeutic drugs, improves the efficacy of treatment and lowers toxicity. Nevertheless, human trials are warranted to validate these findings. Numerous preclinical studies, combined with an extensive margin of safety and no severe side effects, underscore WOG's therapeutic potential as an anticancer drug. These studies propound the use of WOG as a potential anticancer candidate; however, further high-quality studies are required to firmly establish the clinical efficacy of WOG for the prevention and treatment of human malignancies.


Asunto(s)
Medicamentos Herbarios Chinos , Flavanonas , Neoplasias , Scutellaria , Medicamentos Herbarios Chinos/farmacología , Flavanonas/farmacología , Flavanonas/uso terapéutico , Flavonoides , Humanos , Masculino , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Extractos Vegetales/farmacología , Scutellaria baicalensis
3.
J Cell Physiol ; 236(12): 7938-7965, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34105151

RESUMEN

In recent years, triple-negative breast cancer (TNBC) has emerged as the most aggressive subtype of breast cancer and is usually associated with increased mortality worldwide. The severity of TNBC is primarily observed in younger women, with cases ranging from approximately 12%-24% of all breast cancer cases. The existing hormonal therapies offer limited clinical solutions in completely circumventing the TNBC, with chemoresistance and tumor recurrences being the common hurdles in the path of TNBC treatment. Accumulating evidence has correlated the dysregulation of long noncoding RNAs (lncRNAs) with increased cell proliferation, invasion, migration, tumor growth, chemoresistance, and decreased apoptosis in TNBC. Various clinical studies have revealed that aberrant expression of lncRNAs in TNBC tissues is associated with poor prognosis, lower overall survival, and disease-free survival. Due to these specific characteristics, lncRNAs have emerged as novel diagnostic and prognostic biomarkers for TNBC treatment. However, the underlying mechanism through which lncRNAs perform their actions remains unclear, and extensive research is being carried out to reveal it. Therefore, understanding of mechanisms regulating the modulation of lncRNAs will be a substantial breakthrough in effective treatment therapies for TNBC. This review highlights the association of several lncRNAs in TNBC progression and treatment, along with their possible functions and mechanisms.


Asunto(s)
Carcinogénesis/genética , Recurrencia Local de Neoplasia/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , ARN Largo no Codificante/genética
4.
IUBMB Life ; 73(8): 1016-1044, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34170599

RESUMEN

Cancer is a major public health concern due to high mortality and poor quality of life of patients. Despite the availability of advanced therapeutic interventions, most treatment modalities are not efficacious, very expensive, and cause several adverse side effects. The factors such as drug resistance, lack of specificity, and low efficacy of the cancer drugs necessitate developing alternative strategies for the prevention and treatment of this disease. Xanthohumol (XN), a prenylated chalcone present in Hop (Humulus lupulus), has been found to possess prominent activities against aging, diabetes, inflammation, microbial infection, and cancer. Thus, this manuscript thoroughly reviews the literature on the anti-cancer properties of XN and its various molecular targets. XN was found to exert its inhibitory effect on the growth and proliferation of cancer cells via modulation of multiple signaling pathways such as Akt, AMPK, ERK, IGFBP2, NF-κB, and STAT3, and also modulates various proteins such as Notch1, caspases, MMPs, Bcl-2, cyclin D1, oxidative stress markers, tumor-suppressor proteins, and miRNAs. Thus, these reports suggest that XN possesses enormous therapeutic potential against various cancers and could be potentially used as a multi-targeted anti-cancer agent with minimal adverse effects.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Flavonoides/química , Flavonoides/farmacología , Neoplasias/tratamiento farmacológico , Propiofenonas/química , Propiofenonas/farmacología , Bibliometría , Femenino , Flavonoides/farmacocinética , Humanos , Humulus/química , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Propiofenonas/farmacocinética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
5.
Mol Cell Biochem ; 476(9): 3303-3318, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33895911

RESUMEN

Lung cancer represents one of the most prevalent neoplasms across the globe. Tobacco smoking, exposure to different occupational and environmental carcinogens, and various dietary factors are strongly implicated in the development of lung cancer. The 5-year survival rate of lung cancer is extremely poor which can be attributed to its propensity for early spread, lack of appropriate biomarkers and proper therapeutic strategies for this aggressive neoplasm. Emerging evidence suggests tumor necrosis factor-α-induced protein eight like 1 (TIPE1 or TNFAIP8L1), which functions as a cell death regulator, to hold high prospect as an important biomarker. Interestingly, this protein was found to be significantly downregulated in human lung cancer tissues compared to normal lung tissues. In addition, this protein exerted marked downregulation in different stages and grades of lung tumor. Further knockout of TIPE1 led to the enhancement in proliferation, survival, migration and invasion of NCIH460 human lung cancer cells through modulation of Akt/mTOR/STAT-3 signaling cascade. In addition, TIPE1 was found to be involved in nicotine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, N-nitrosonornicotine and benzo[a]pyrene-mediated lung cancer through enhanced proliferation, survival and migration of lung cancer cells. Altogether, this newly identified protein plays a critical role in lung cancer pathogenesis and possess enormous prospect to serve as an important tool in the effective management of this aggressive neoplasm.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Pulmonares/patología , Apoptosis , Biomarcadores de Tumor/genética , Sistemas CRISPR-Cas , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Invasividad Neoplásica , Pronóstico , Células Tumorales Cultivadas
6.
Crit Rev Immunol ; 40(1): 1-39, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32421977

RESUMEN

Most chronic diseases, caused by lifestyle factors, appear to be linked to inflammation. Inflammation is activated mechanistically, and nuclear factor-κB (NF-κB) is a significant mediator. NF-κB, one of the most studied transcription factors, was first identified in the nucleus of B lymphocytes almost three decades ago. This protein has a key function in regulating the human immune system, and its dysregulation has been linked to many chronic diseases including asthma, cancer, diabetes, rheumatoid arthritis, inflammation, and neurological disorders. Physiologically, many cytokines have been discovered that activate NF-κB. Pathologically, environmental carcinogens such as cigarette smoke, radiation, bacteria, and viruses can also activate this transcription factor. NF-κB activation controls expression of more than 500 genes, and most are deleterious to the human body when dysregulated. More than 70,000 articles have been published regarding NF-κB. This review emphasizes the upside and downside of NF-κB in normal and disease conditions and the ways in which we can control this critical transcription factor in patients.


Asunto(s)
Asma/metabolismo , Enfermedades Autoinmunes/metabolismo , Inflamación/metabolismo , FN-kappa B/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Animales , Enfermedad Crónica , Regulación de la Expresión Génica , Humanos , FN-kappa B/genética , Transducción de Señal
7.
Pharmacol Res ; 153: 104635, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31926274

RESUMEN

The World Health Organization (WHO) has documented that cancer is the second foremost reason for death worldwide. Various factors are responsible for cancer, for instance, exposure to different physical, chemical and biological carcinogens, infections, hereditary, poor dietary habits and lifestyle etc. Cancer is a preventable disease if detected at an early stage; however, most of the cases of cancer are diagnosed at an incurable advanced or metastatic stage. According to WHO about 70 % of deaths due to cancer occur in countries with low- or middle-income. The major problems associated with the conventional therapies are cancer recurrence, development of chemoresistance, affordability, late-stage diagnosis, adverse side effects and inaccessible treatment. Thus, there is an urgent need to find alternative treatment modalities, which have easy accessibility and are affordable with minimum side effects. In this article, we reviewed the natural stilbene known as "Piceatannol" for its anticancer properties. Numerous preclinical studies have reported the potential of Piceatannol to prevent or impede the growth of various cancers originating from different organs such as brain, breast, cervical, colon, liver, lung, prostate, skin, etc. The current review primarily emphasises on the insights of Piceatannol source, chemistry, and the molecular mechanisms involved in the regression of the tumor. This review supports Piceatannol as a potential anticancer and chemopreventive agent and suggests that it can be effectively employed as a capable anti-cancer drug.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias/prevención & control , Inhibidores de Proteínas Quinasas/uso terapéutico , Estilbenos/farmacología , Antineoplásicos Fitogénicos/farmacocinética , Antineoplásicos Fitogénicos/uso terapéutico , Humanos , Estructura Molecular , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Estilbenos/farmacocinética , Estilbenos/uso terapéutico
8.
Crit Rev Immunol ; 39(6): 439-479, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32421957

RESUMEN

Tumor necrosis factor (TNF)-α, the most potent proinflammatory cytokine discovered to date, was first isolated in 1984 from human macrophage cells. Initially, it was thought to be a protein that was cytotoxic to tumor cells. But later, it was regarded as an agent that promotes inflammation and other chronic diseases found in humans. Currently, we know that the TNF superfamily (TNFS) has 19 members that perform a wide variety of functions via > 40 TNF receptors. Of TNFS members, TNF-α has been studied extensively and was found to be implicated in numerous autoimmune diseases, such as rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel disease, psoriasis, systemic lupus erythematosus, juvenile idiopathic arthritis, and diabetes. Thus, agents that can inhibit TNF-α have great potential for prevention and treatment of chronic diseases. To date, the U.S. Food and Drug Administration has approved many TNF-α blockers, such as etanercept, infliximab, adalimumab, certolizumab pegol, and golimumab. These agents can block TNF-α actions and be used to treat different diseases. However, the uses of TNF-α blockers are not without serious adverse effects. Therefore, natural TNF-α blockers are best for developing safe, efficacious, and affordable agents for prevention and treatment of chronic diseases. The current review details the TNFS, functions of TNF-α in normal and disease conditions, roles of TNF-α blockers, and advantages and disadvantages.


Asunto(s)
Antiinflamatorios/uso terapéutico , Certolizumab Pegol/uso terapéutico , Etanercept/uso terapéutico , Enfermedades del Sistema Inmune/terapia , Inflamación/terapia , Receptores del Factor de Necrosis Tumoral/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Anticuerpos Monoclonales/uso terapéutico , Humanos , Enfermedades del Sistema Inmune/inmunología , Inflamación/inmunología , Receptores del Factor de Necrosis Tumoral/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
9.
Int J Mol Sci ; 21(9)2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384682

RESUMEN

Oral cancer (OC) is a devastating disease that takes the lives of lots of people globally every year. The current spectrum of treatment modalities does not meet the needs of the patients. The disease heterogeneity demands personalized medicine or targeted therapies. Therefore, there is an urgent need to identify potential targets for the treatment of OC. Abundant evidence has suggested that the components of the protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway are intrinsic factors for carcinogenesis. The AKT protein is central to the proliferation and survival of normal and cancer cells, and its downstream protein, mTOR, also plays an indispensable role in the cellular processes. The wide involvement of the AKT/mTOR pathway has been noted in oral squamous cell carcinoma (OSCC). This axis significantly regulates the various hallmarks of cancer, like proliferation, survival, angiogenesis, invasion, metastasis, autophagy, and epithelial-to-mesenchymal transition (EMT). Activated AKT/mTOR signaling is also associated with circadian signaling, chemoresistance and radio-resistance in OC cells. Several miRNAs, circRNAs and lncRNAs also modulate this pathway. The association of this axis with the process of tumorigenesis has culminated in the identification of its specific inhibitors for the prevention and treatment of OC. In this review, we discussed the significance of AKT/mTOR signaling in OC and its potential as a therapeutic target for the management of OC. This article also provided an update on several AKT/mTOR inhibitors that emerged as promising candidates for therapeutic interventions against OC/head and neck cancer (HNC) in clinical studies.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias de la Boca/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Carcinoma de Células Escamosas/metabolismo , Ensayos Clínicos como Asunto , Humanos , Neoplasias de la Boca/metabolismo , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos
10.
Molecules ; 25(10)2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32408623

RESUMEN

According to the World Health Organization (WHO), cancer is the second-highest cause of mortality in the world, and it kills nearly 9.6 million people annually. Besides the fatality of the disease, poor prognosis, cost of conventional therapies, and associated side-effects add more burden to patients, post-diagnosis. Therefore, the search for alternatives for the treatment of cancer that are safe, multi-targeted, effective, and cost-effective has compelled us to go back to ancient systems of medicine. Natural herbs and plant formulations are laden with a variety of phytochemicals. One such compound is rhein, which is an anthraquinone derived from the roots of Rheum spp. and Polygonum multiflorum. In ethnomedicine, these plants are used for the treatment of inflammation, osteoarthritis, diabetes, and bacterial and helminthic infections. Increasing evidence suggests that this compound can suppress breast cancer, cervical cancer, colon cancer, lung cancer, ovarian cancer, etc. in both in vitro and in vivo settings. Recent studies have reported that this compound modulates different signaling cascades in cancer cells and can prevent angiogenesis and progression of different types of cancers. The present review highlights the cancer-preventing and therapeutic properties of rhein based on the available literature, which will help to extend further research to establish the chemoprotective and therapeutic roles of rhein compared to other conventional drugs. Future pharmacokinetic and toxicological studies could support this compound as an effective anticancer agent.


Asunto(s)
Antraquinonas/uso terapéutico , Antineoplásicos Fitogénicos/uso terapéutico , Fallopia multiflora/química , Neoplasias , Raíces de Plantas/química , Rheum/química , Antraquinonas/química , Antineoplásicos Fitogénicos/química , Femenino , Humanos , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/prevención & control
11.
Pharmacol Res ; 144: 192-209, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31002949

RESUMEN

In spite of billions of dollars expended on cancer research every year, the incidence rate and the mortality rate due to this widespread disease has increased drastically over the last few decades. Recent reports from the World Health Organization advocate that overall global cancer burden and deaths due to cancer are expected to double by the next decade. Synthetic drugs developed as chemotherapeutics have repeatedly shown adverse side effects and development of chemoresistance. Cancer is basically a multifactorial disease that necessitates the modulation of multiple targets and oncogenic signaling pathways. Honokiol (C18H18O2) is a biphenolic natural compound isolated from the leaves and barks of Magnolia plant species and has been extensively studied for its beneficial effects against several chronic diseases. Honokiol is capable of efficiently preventing the growth of wide variety of tumors such as those of brain, breast, cervical, colon, liver, lung, prostate, skin, and hematological malignancies. Recent work has shown that this phytochemical can modulate various molecular targets such as activation of pro-apoptotic factors, suppression of anti-apoptotic proteins and different transcription factors, downregulation of various enzymes, chemokines, cell surface adhesion molecules, and cell cycle proteins, and inhibition of activity of protein tyrosine kinases and serine/threonine kinases. Because of its pharmacological safety, honokiol can either be used alone or in combination with other chemotherapeutic drugs for the prevention and treatment of cancer. The current review describes in detail the various reports supporting these anti-cancer studies documented with this promising agent.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Lignanos/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Compuestos de Bifenilo/química , Compuestos de Bifenilo/farmacología , Humanos , Lignanos/química , Lignanos/farmacología , Magnolia/química , Terapia Molecular Dirigida , Neoplasias/prevención & control
12.
Int J Mol Sci ; 20(17)2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31443458

RESUMEN

Natural compounds, in recent years, have attracted significant attention for their use in the prevention and treatment of diverse chronic diseases as they are devoid of major toxicities. Boswellic acid (BA), a series of pentacyclic triterpene molecules, is isolated from the gum resin of Boswellia serrata and Boswellia carteri. It proved to be one such agent that has exhibited efficacy against various chronic diseases like arthritis, diabetes, asthma, cancer, inflammatory bowel disease, Parkinson's disease, Alzheimer's, etc. The molecular targets attributed to its wide range of biological activities include transcription factors, kinases, enzymes, receptors, growth factors, etc. The present review is an attempt to demonstrate the diverse pharmacological uses of BA, along with its underlying molecular mechanism of action against different ailments. Further, this review also discusses the roadblocks associated with the pharmacokinetics and bioavailability of this promising compound and strategies to overcome those limitations for developing it as an effective drug for the clinical management of chronic diseases.


Asunto(s)
Triterpenos/farmacología , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacocinética , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacocinética , Antineoplásicos Fitogénicos/farmacología , Enfermedad Crónica/tratamiento farmacológico , Humanos , Ratones , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Extractos Vegetales/farmacocinética , Extractos Vegetales/farmacología , Relación Estructura-Actividad , Triterpenos/administración & dosificación , Triterpenos/química , Triterpenos/farmacocinética
13.
J Transl Med ; 16(1): 14, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29370858

RESUMEN

Extensive research within the last several decades has revealed that the major risk factors for most chronic diseases are infections, obesity, alcohol, tobacco, radiation, environmental pollutants, and diet. It is now well established that these factors induce chronic diseases through induction of inflammation. However, inflammation could be either acute or chronic. Acute inflammation persists for a short duration and is the host defense against infections and allergens, whereas the chronic inflammation persists for a long time and leads to many chronic diseases including cancer, cardiovascular diseases, neurodegenerative diseases, respiratory diseases, etc. Numerous lines of evidence suggest that the aforementioned risk factors induced cancer through chronic inflammation. First, transcription factors NF-κB and STAT3 that regulate expression of inflammatory gene products, have been found to be constitutively active in most cancers; second, chronic inflammation such as pancreatitis, prostatitis, hepatitis etc. leads to cancers; third, activation of NF-κB and STAT3 leads to cancer cell proliferation, survival, invasion, angiogenesis and metastasis; fourth, activation of NF-κB and STAT3 leads to resistance to chemotherapy and radiation, and hypoxia and acidic conditions activate these transcription factors. Therefore, targeting these pathways may provide opportunities for both prevention and treatment of cancer and other chronic diseases. We will discuss in this review the potential of various dietary agents such as spices and its components in the suppression of inflammatory pathways and their roles in the prevention and therapy of cancer and other chronic diseases. In fact, epidemiological studies do indicate that cancer incidence in countries such as India where spices are consumed daily is much lower (94/100,000) than those where spices are not consumed such as United States (318/100,000), suggesting the potential role of spices in cancer prevention.


Asunto(s)
Enfermedad Crónica , Inflamación/patología , Especias , Animales , Suplementos Dietéticos , Humanos , Transducción de Señal
14.
Pharmacol Res ; 130: 259-272, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29496592

RESUMEN

Despite the significant advancements in the diagnosis and treatment of cancer, it still remains one of the most fatal diseases in the world due to the lack of sensitive diagnosis methods and effective drugs. Therefore, discovering novel therapies that are safe, efficacious and affordable are required for the better management of this disease. Tocotrienols, analogues of vitamin E have gained increased attention due to their safety and efficacy. Extensive research over the past several years has strongly indicated that tocotrienols can efficiently prevent/inhibit the growth of different cancers such as cancers of blood, brain, breast, cervical, colon, liver, lung, pancreas, prostate, skin, stomach etc. This is mainly accredited to their ability to modulate various molecular targets involved in cancer cell proliferation, survival, invasion, angiogenesis, and metastasis such as NF-κB, STAT3, Akt/mTOR, etc. In addition, increasing lines of evidence has shown that tocotrienols can sensitize cancer cells to chemotherapeutic agents such as celecoxib, doxorubicin, erlotinib, gefitinib, gemcitabine, paclitaxel, statin etc. Moreover, several clinical trials have confirmed the safety and tolerability of tocotrienols in humans. This review summarizes the potential of tocotrienols for the prevention and treatment of different cancers based on the available in vitro, in vivo and clinical studies.


Asunto(s)
Antioxidantes/uso terapéutico , Neoplasias/tratamiento farmacológico , Tocotrienoles/uso terapéutico , Vitaminas/uso terapéutico , Animales , Quimioprevención , Humanos , Neoplasias/metabolismo , Neoplasias/prevención & control
15.
Int J Mol Sci ; 19(8)2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-30103472

RESUMEN

The past few decades have witnessed widespread research to challenge carcinogenesis; however, it remains one of the most important health concerns with the worst prognosis and diagnosis. Increasing lines of evidence clearly show that the rate of cancer incidence will increase in future and will create global havoc, designating it as an epidemic. Conventional chemotherapeutics and treatment with synthetic disciplines are often associated with adverse side effects and development of chemoresistance. Thus, discovering novel economic and patient friendly drugs that are safe and efficacious is warranted. Several natural compounds have proved their potential against this dreadful disease so far. Magnolol is a hydroxylated biphenyl isolated from the root and stem bark of Magnolia tree. Magnolol can efficiently prevent or inhibit the growth of various cancers originating from different organs such as brain, breast, cervical, colon, liver, lung, prostate, skin, etc. Considering these perspectives, the current review primarily focuses on the fascinating role of magnolol against various types of cancers, and the source and chemistry of magnolol and the molecular mechanism underlying the targets of magnolol are discussed. This review proposes magnolol as a suitable candidate that can be appropriately designed and established into a potent anti-cancer drug.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Lignanos/uso terapéutico , Magnolia/química , Neoplasias/prevención & control , Animales , Antineoplásicos Fitogénicos/química , Compuestos de Bifenilo/química , Humanos , Lignanos/química , Neoplasias/metabolismo , Neoplasias/patología
16.
Int J Mol Sci ; 19(10)2018 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-30274259

RESUMEN

The tumor necrosis factor-α-induced protein 8-like (TIPE/TNFAIP8) family is a recently identified family of proteins that is strongly associated with the regulation of immunity and tumorigenesis. This family is comprised of four members, namely, tumor necrosis factor-α-induced protein 8 (TIPE/TNFAIP8), tumor necrosis factor-α-induced protein 8-like 1 (TIPE1/TNFAIP8L1), tumor necrosis factor-α-induced protein 8-like 2 (TIPE2/TNFAIP8L2), and tumor necrosis factor-α-induced protein 8-like 3 (TIPE3/TNFAIP8L3). Although the proteins of this family were initially described as regulators of tumorigenesis, inflammation, and cell death, they are also found to be involved in the regulation of autophagy and the transfer of lipid secondary messengers, besides contributing to immune function and homeostasis. Interestingly, despite the existence of a significant sequence homology among the four members of this family, they are involved in different biological activities and also exhibit remarkable variability of expression. Furthermore, this family of proteins is highly deregulated in different human cancers and various chronic diseases. This review summarizes the vivid role of the TIPE family of proteins and its association with various signaling cascades in diverse chronic diseases.


Asunto(s)
Enfermedad Crónica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias/metabolismo
17.
Clin Sci (Lond) ; 131(15): 1781-1799, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28679846

RESUMEN

Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings.


Asunto(s)
Antineoplásicos/farmacología , Curcumina/farmacología , Transducción de Señal/efectos de los fármacos , Antineoplásicos/uso terapéutico , Ensayos Clínicos como Asunto , Curcumina/uso terapéutico , Receptores ErbB/fisiología , Humanos , FN-kappa B/fisiología , Neoplasias/tratamiento farmacológico , Neoplasias/fisiopatología , Factor de Transcripción STAT3/fisiología
18.
Life Sci ; 293: 120332, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35041835

RESUMEN

Lung cancer is the foremost cause of cancer related mortality among men and one of the most fatal cancers among women. Notably, the 5-year survival rate of lung cancer is very low; 5% in developing countries. This low survival rate can be attributed to factors like late stage diagnosis, rapid postoperative recurrences in the patients undergoing treatment and development of chemoresistance against different agents used for treating lung cancer. Therefore, in this study we evaluated the potential of a recently identified protein namely TIPE3 which is known as a transfer protein of lipid second messengers as a lung cancer biomarker. TIPE3 was found to be significantly upregulated in lung cancer tissues indicating its role in the positive regulation of lung cancer. Supporting this finding, knockout of TIPE3 was also found to reduce the proliferation, survival and migration of lung cancer cells and arrested the G2 phase of cell cycle through inactivation of Akt/mTOR, NF-κB, STAT-3 signaling. It is well evinced that tobacco is the major risk factor of lung cancer which affects both males and females. Therefore, this study also evaluated the involvement of TIPE3 in tobacco mediated lung carcinogenesis. Notably, this study shows for the first time that TIPE3 positively regulates tobacco induced proliferation, survival and migration of lung cancer through modulation of Akt/mTOR signaling. Thus, TIPE3 plays critical role in the pathogenesis of lung cancer and hence it can be specifically targeted to develop novel therapeutic strategies.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/deficiencia , Neoplasias Pulmonares/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Biomarcadores de Tumor/deficiencia , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Técnicas de Inactivación de Genes/métodos , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Neoplasias Pulmonares/patología , FN-kappa B/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Factor de Transcripción STAT3/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
19.
Artículo en Inglés | MEDLINE | ID: mdl-34909644

RESUMEN

Although chronic diseases are often caused by the perturbations in multiple cellular components involved in different biological processes, most of the approved therapeutics target a single gene/protein/pathway which makes them not as efficient as they are anticipated and are also known to cause severe side effects. Therefore, the pursuit of safe, efficacious, and multitargeted agents is imperative for the prevention and treatment of these diseases. Cardamonin is one such agent that has been known to modulate different signaling molecules such as transcription factors (NF-κB and STAT3), cytokines (TNF-α, IL-1ß, and IL-6) enzymes (COX-2, MMP-9 and ALDH1), other proteins and genes (Bcl-2, XIAP and cyclin D1), involved in the development and progression of chronic diseases. Multiple lines of evidence emerging from pre-clinical studies advocate the promising potential of this agent against various pathological conditions like cancer, cardiovascular diseases, diabetes, neurological disorders, inflammation, rheumatoid arthritis, etc., despite its poor bioavailability. Therefore, further studies are paramount in establishing its efficacy in clinical settings. Hence, the current review focuses on highlighting the underlying molecular mechanism of action of cardamonin and delineating its potential in the prevention and treatment of different chronic diseases.

20.
Life Sci ; 287: 120074, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34687757

RESUMEN

BACKGROUND: Chronic diseases or non-communicable diseases are a major burden worldwide due to the lack of highly efficacious treatment modalities and the serious side effects associated with the available therapies. PURPOSE/STUDY DESIGN: A novel self-emulsifying formulation of curcumin with fenugreek galactomannan hydrogel scaffold as a water-dispersible non-covalent curcumin-galactomannan molecular complex (curcumagalactomannosides, CGM) has shown better bioavailability than curcumin and can be used for the prevention and treatment of chronic diseases. However, the exact potential of this formulation has not been studied, which would pave the way for its use for the prevention and treatment of multiple chronic diseases. METHODS: The whole transcriptome analysis (RNAseq) was used to identify differentially expressed genes (DEGs) in the liver tissues of mice treated with LPS to investigate the potential of CGM on the prevention and treatment of chronic diseases. Expression analysis using DESeq2 package, GO, and pathway analysis of the differentially expressed transcripts was performed using UniProtKB and KEGG-KAAS server. RESULTS: The results showed that 559 genes differentially expressed between the liver tissue of control mice and CGM treated mice (100 mg/kg b.wt. for 14 days), with adjusted p-value below 0.05, of which 318 genes were significantly upregulated and 241 were downregulated. Further analysis showed that 33 genes which were upregulated (log2FC > 8) in the disease conditions were significantly downregulated, and 32 genes which were downregulated (log2FC < -8) in the disease conditions were significantly upregulated after the treatment with CGM. CONCLUSION: Overall, our study showed CGM has high potential in the prevention and treatment of multiple chronic diseases.


Asunto(s)
Biología Computacional/métodos , Curcumina/administración & dosificación , Composición de Medicamentos/métodos , Galactosa/análogos & derivados , Mananos/administración & dosificación , Análisis de Secuencia de ARN/métodos , Animales , Disponibilidad Biológica , Enfermedad Crónica , Curcumina/síntesis química , Curcumina/metabolismo , Combinación de Medicamentos , Femenino , Galactosa/administración & dosificación , Galactosa/síntesis química , Galactosa/metabolismo , Mananos/síntesis química , Mananos/metabolismo , Ratones , Ratones Endogámicos BALB C , Trigonella/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA