Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Biol Chem ; 299(8): 104992, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392848

RESUMEN

Malignant hyperthermia susceptibility (MHS) is an autosomal dominant pharmacogenetic disorder that manifests as a hypermetabolic state when carriers are exposed to halogenated volatile anesthetics or depolarizing muscle relaxants. In animals, heat stress intolerance is also observed. MHS is linked to over 40 variants in RYR1 that are classified as pathogenic for diagnostic purposes. More recently, a few rare variants linked to the MHS phenotype have been reported in CACNA1S, which encodes the voltage-activated Ca2+ channel CaV1.1 that conformationally couples to RyR1 in skeletal muscle. Here, we describe a knock-in mouse line that expresses one of these putative variants, CaV1.1-R174W. Heterozygous (HET) and homozygous (HOM) CaV1.1-R174W mice survive to adulthood without overt phenotype but fail to trigger with fulminant malignant hyperthermia when exposed to halothane or moderate heat stress. All three genotypes (WT, HET, and HOM) express similar levels of CaV1.1 by quantitative PCR, Western blot, [3H]PN200-110 receptor binding and immobilization-resistant charge movement densities in flexor digitorum brevis fibers. Although HOM fibers have negligible CaV1.1 current amplitudes, HET fibers have similar amplitudes to WT, suggesting a preferential accumulation of the CaV1.1-WT protein at triad junctions in HET animals. Never-the-less both HET and HOM have slightly elevated resting free Ca2+ and Na+ measured with double barreled microelectrode in vastus lateralis that is disproportional to upregulation of transient receptor potential canonical (TRPC) 3 and TRPC6 in skeletal muscle. CaV1.1-R174W and upregulation of TRPC3/6 alone are insufficient to trigger fulminant malignant hyperthermia response to halothane and/or heat stress in HET and HOM mice.


Asunto(s)
Halotano , Respuesta al Choque Térmico , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio , Hipertermia Maligna , Animales , Ratones , Calcio/metabolismo , Halotano/farmacología , Respuesta al Choque Térmico/genética , Hipertermia Maligna/genética , Hipertermia Maligna/metabolismo , Hipertermia Maligna/patología , Músculo Esquelético/metabolismo , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética
2.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34583989

RESUMEN

The skeletal muscle L-type Ca2+ channel (CaV1.1) works primarily as a voltage sensor for skeletal muscle action potential (AP)-evoked Ca2+ release. CaV1.1 contains four distinct voltage-sensing domains (VSDs), yet the contribution of each VSD to AP-evoked Ca2+ release remains unknown. To investigate the role of VSDs in excitation-contraction coupling (ECC), we encoded cysteine substitutions on each S4 voltage-sensing segment of CaV1.1, expressed each construct via in vivo gene transfer electroporation, and used in cellulo AP fluorometry to track the movement of each CaV1.1 VSD in skeletal muscle fibers. We first provide electrical measurements of CaV1.1 voltage sensor charge movement in response to an AP waveform. Then we characterize the fluorescently labeled channels' VSD fluorescence signal responses to an AP and compare them with the waveforms of the electrically measured charge movement, the optically measured free myoplasmic Ca2+, and the calculated rate of Ca2+ release from the sarcoplasmic reticulum for an AP, the physiological signal for skeletal muscle fiber activation. A considerable fraction of the fluorescence signal for each VSD occurred after the time of peak Ca2+ release, and even more occurred after the earlier peak of electrically measured charge movement during an AP, and thus could not directly reflect activation of Ca2+ release or charge movement, respectively. However, a sizable fraction of the fluorometric signals for VSDs I, II, and IV, but not VSDIII, overlap the rising phase of charge moved, and even more for Ca2+ release, and thus could be involved in voltage sensor rearrangements or Ca2+ release activation.


Asunto(s)
Potenciales de Acción/fisiología , Canales de Calcio Tipo L/fisiología , Fibras Musculares Esqueléticas/fisiología , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/química , Acoplamiento Excitación-Contracción , Activación del Canal Iónico , Ratones , Conejos , Retículo Sarcoplasmático/metabolismo
3.
J Biol Chem ; 293(9): 3126-3133, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29326166

RESUMEN

A glutamate-to-lysine substitution at position 1014 within the selectivity filter of the skeletal muscle L-type Ca2+ channel (CaV1.1) abolishes Ca2+ flux through the channel pore. Mice engineered to exclusively express the mutant channel display accelerated muscle fatigue, changes in muscle composition, and altered metabolism relative to wildtype littermates. By contrast, mice expressing another mutant CaV1.1 channel that is impermeable to Ca2+ (CaV1.1 N617D) have shown no detectable phenotypic differences from wildtype mice to date. The major biophysical difference between the CaV1.1 E1014K and CaV1.1 N617D mutants elucidated thus far is that the former channel conducts robust Na+ and Cs+ currents in patch-clamp experiments, but neither of these monovalent conductances seems to be of relevance in vivo Thus, the basis for the different phenotypes of these mutants has remained enigmatic. We now show that CaV1.1 E1014K readily conducts 1,4-dihydropyridine-sensitive K+ currents at depolarizing test potentials, whereas CaV1.1 N617D does not. Our observations, coupled with a large body of work by others regarding the role of K+ accumulation in muscle fatigue, raise the possibility that the introduction of an additional K+ flux from the myoplasm into the transverse-tubule lumen accelerates the onset of fatigue and precipitates the metabolic changes observed in CaV1.1 E1014K muscle. These results, highlighting an unexpected consequence of a channel mutation, may help define the complex mechanisms underlying skeletal muscle fatigue and related dysfunctions.


Asunto(s)
Canales de Calcio Tipo L/genética , Músculo Esquelético/metabolismo , Mutación , Potasio/metabolismo , Animales , Transporte Biológico , Canales de Calcio Tipo L/metabolismo , Línea Celular , Ratones
4.
Biophys J ; 110(4): 912-21, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26910427

RESUMEN

The molecular basis for excitation-contraction coupling in skeletal muscle is generally thought to involve conformational coupling between the L-type voltage-gated Ca(2+) channel (CaV1.1) and the type 1 ryanodine receptor (RyR1). This coupling is bidirectional; in addition to the orthograde signal from CaV1.1 to RyR1 that triggers Ca(2+) release from the sarcoplasmic reticulum, retrograde signaling from RyR1 to CaV1.1 results in increased amplitude and slowed activation kinetics of macroscopic L-type Ca(2+) current. Orthograde coupling was previously shown to be ablated by a glycine for glutamate substitution at RyR1 position 4242. In this study, we investigated whether the RyR1-E4242G mutation affects retrograde coupling. L-type current in myotubes homozygous for RyR1-E4242G was substantially reduced in amplitude (∼80%) relative to that observed in myotubes from normal control (wild-type and/or heterozygous) myotubes. Analysis of intramembrane gating charge movements and ionic tail current amplitudes indicated that the reduction in current amplitude during step depolarizations was a consequence of both decreased CaV1.1 membrane expression (∼50%) and reduced channel Po (∼55%). In contrast, activation kinetics of the L-type current in RyR1-E4242G myotubes resembled those of normal myotubes, unlike dyspedic (RyR1 null) myotubes in which the L-type currents have markedly accelerated activation kinetics. Exogenous expression of wild-type RyR1 partially restored L-type current density. From these observations, we conclude that mutating residue E4242 affects RyR1 structures critical for retrograde communication with CaV1.1. Moreover, we propose that retrograde coupling has two distinct and separable components that are dependent on different structural elements of RyR1.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Fenómenos Electrofisiológicos/efectos de los fármacos , Regulación de la Expresión Génica , Cinética , Ratones , Fibras Musculares Esqueléticas/metabolismo , Proteínas Mutantes/química , Proteínas Recombinantes de Fusión/farmacología , Canal Liberador de Calcio Receptor de Rianodina/química
5.
J Exp Biol ; 219(Pt 2): 175-82, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26792328

RESUMEN

In skeletal muscle, excitation-contraction (EC) coupling relies on the transmission of an intermolecular signal from the voltage-sensing regions of the L-type Ca(2+) channel (Ca(V)1.1) in the plasma membrane to the channel pore of the type 1 ryanodine receptor (RyR1) nearly 10 nm away in the membrane of the sarcoplasmic reticulum (SR). Even though the roles of Ca(V)1.1 and RyR1 as voltage sensor and SR Ca(2+) release channel, respectively, have been established for nearly 25 years, the mechanism underlying communication between these two channels remains undefined. In the course of this article, I will review current viewpoints on this topic with particular emphasis on recent studies.


Asunto(s)
Acoplamiento Excitación-Contracción , Músculo Esquelético/metabolismo , Animales , Canales de Calcio Tipo L/metabolismo , Humanos , Activación del Canal Iónico , Músculo Esquelético/ultraestructura , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
6.
Proc Natl Acad Sci U S A ; 110(44): 18011-6, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24128759

RESUMEN

An inexorable decline in maximum heart rate (mHR) progressively limits human aerobic capacity with advancing age. This decrease in mHR results from an age-dependent reduction in "intrinsic heart rate" (iHR), which is measured during autonomic blockade. The reduced iHR indicates, by definition, that pacemaker function of the sinoatrial node is compromised during aging. However, little is known about the properties of pacemaker myocytes in the aged sinoatrial node. Here, we show that depressed excitability of individual sinoatrial node myocytes (SAMs) contributes to reductions in heart rate with advancing age. We found that age-dependent declines in mHR and iHR in ECG recordings from mice were paralleled by declines in spontaneous action potential (AP) firing rates (FRs) in patch-clamp recordings from acutely isolated SAMs. The slower FR of aged SAMs resulted from changes in the AP waveform that were limited to hyperpolarization of the maximum diastolic potential and slowing of the early part of the diastolic depolarization. These AP waveform changes were associated with cellular hypertrophy, reduced current densities for L- and T-type Ca(2+) currents and the "funny current" (If), and a hyperpolarizing shift in the voltage dependence of If. The age-dependent reduction in sinoatrial node function was not associated with changes in ß-adrenergic responsiveness, which was preserved during aging for heart rate, SAM FR, L- and T-type Ca(2+) currents, and If. Our results indicate that depressed excitability of individual SAMs due to altered ion channel activity contributes to the decline in mHR, and thus aerobic capacity, during normal aging.


Asunto(s)
Potenciales de Acción/fisiología , Envejecimiento/fisiología , Frecuencia Cardíaca/fisiología , Miocitos Cardíacos/fisiología , Nodo Sinoatrial/fisiología , Análisis de Varianza , Animales , Calcio/metabolismo , Electrocardiografía , Ratones , Técnicas de Placa-Clamp , Nodo Sinoatrial/citología
7.
Pflugers Arch ; 467(11): 2299-306, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25771954

RESUMEN

Members of the Rem, Rem2, Rad, Gem/Kir (RGK) family of small GTP-binding proteins inhibit high-voltage-activated (HVA) Ca(2+) channels through interactions with both the principal α1 and the auxiliary ß subunits of the channel complex. Three highly conserved residues of Rem (R200, L227, and H229) have been shown in vitro to be critical for interactions with ß subunits. However, the functional significance of these residues is not known. To investigate the contributions of R200, L227, and H229 to ß subunit-mediated RGK protein-dependent inhibition of HVA channels, we introduced alanine substitutions into all three positions of Venus fluorescent protein-tagged Rem (V-Rem AAA) and made three other V-Rem constructs with an alanine introduced at only one position (V-Rem R200A, V-Rem L227A, and V-Rem H229A). Confocal imaging and immunoblotting demonstrated that each Venus-Rem mutant construct had comparable expression levels to Venus-wild-type Rem when heterologously expressed in tsA201 cells. In electrophysiological experiments, V-Rem AAA failed to inhibit N-type Ca(2+) currents in tsA201 cells coexpressing CaV2.2 α1B, ß3, and α2δ-1 channel subunits. The V-Rem L227A single mutant also failed to reduce N-type currents conducted by coexpressed CaV2.2 channels, a finding consistent with the previous observation that a leucine at position 227 is critical for Rem-ß interactions. Rem-dependent inhibition of CaV2.2 channels was impaired to a much lesser extent by the R200A substitution. In contrast to the earlier work demonstrating that Rem H229A was unable to interact with ß3 subunits in vitro, V-Rem H229A produced nearly complete inhibition of CaV2.2-mediated currents.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Alanina/genética , Sustitución de Aminoácidos , Animales , Canales de Calcio/efectos de los fármacos , Canales de Calcio/genética , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo N/efectos de los fármacos , Canales de Calcio Tipo N/metabolismo , Línea Celular , Humanos , Activación del Canal Iónico , Proteínas de Unión al GTP Monoméricas/genética , Mutación/genética , Conejos , Ratas
8.
Proc Natl Acad Sci U S A ; 109(35): 14158-63, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22891308

RESUMEN

Triclosan (TCS), a high-production-volume chemical used as a bactericide in personal care products, is a priority pollutant of growing concern to human and environmental health. TCS is capable of altering the activity of type 1 ryanodine receptor (RyR1), but its potential to influence physiological excitation-contraction coupling (ECC) and muscle function has not been investigated. Here, we report that TCS impairs ECC of both cardiac and skeletal muscle in vitro and in vivo. TCS acutely depresses hemodynamics and grip strength in mice at doses ≥12.5 mg/kg i.p., and a concentration ≥0.52 µM in water compromises swimming performance in larval fathead minnow. In isolated ventricular cardiomyocytes, skeletal myotubes, and adult flexor digitorum brevis fibers TCS depresses electrically evoked ECC within ∼10-20 min. In myotubes, nanomolar to low micromolar TCS initially potentiates electrically evoked Ca(2+) transients followed by complete failure of ECC, independent of Ca(2+) store depletion or block of RyR1 channels. TCS also completely blocks excitation-coupled Ca(2+) entry. Voltage clamp experiments showed that TCS partially inhibits L-type Ca(2+) currents of cardiac and skeletal muscle, and [(3)H]PN200 binding to skeletal membranes is noncompetitively inhibited by TCS in the same concentration range that enhances [(3)H]ryanodine binding. TCS potently impairs orthograde and retrograde signaling between L-type Ca(2+) and RyR channels in skeletal muscle, and L-type Ca(2+) entry in cardiac muscle, revealing a mechanism by which TCS weakens cardiac and skeletal muscle contractility in a manner that may negatively impact muscle health, especially in susceptible populations.


Asunto(s)
Antiinfecciosos Locales/toxicidad , Calcio/metabolismo , Insuficiencia Cardíaca/inducido químicamente , Contracción Muscular/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Triclosán/toxicidad , Factores de Edad , Animales , Animales Recién Nacidos , Canales de Calcio Tipo L/metabolismo , Cyprinidae , Insuficiencia Cardíaca/fisiopatología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Contracción Miocárdica/fisiología , Miocardio/citología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Contaminantes del Agua/toxicidad
9.
Proc Natl Acad Sci U S A ; 109(20): 7923-8, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22547813

RESUMEN

Malignant hyperthermia (MH) susceptibility is a dominantly inherited disorder in which volatile anesthetics trigger aberrant Ca(2+) release in skeletal muscle and a potentially fatal rise in perioperative body temperature. Mutations causing MH susceptibility have been identified in two proteins critical for excitation-contraction (EC) coupling, the type 1 ryanodine receptor (RyR1) and Ca(V)1.1, the principal subunit of the L-type Ca(2+) channel. All of the mutations that have been characterized previously augment EC coupling and/or increase the rate of L-type Ca(2+) entry. The Ca(V)1.1 mutation R174W associated with MH susceptibility occurs at the innermost basic residue of the IS4 voltage-sensing helix, a residue conserved among all Ca(V) channels [Carpenter D, et al. (2009) BMC Med Genet 10:104-115.]. To define the functional consequences of this mutation, we expressed it in dysgenic (Ca(V)1.1 null) myotubes. Unlike previously described MH-linked mutations in Ca(V)1.1, R174W ablated the L-type current and had no effect on EC coupling. Nonetheless, R174W increased sensitivity of Ca(2+) release to caffeine (used for MH diagnostic in vitro testing) and to volatile anesthetics. Moreover, in Ca(V)1.1 R174W-expressing myotubes, resting myoplasmic Ca(2+) levels were elevated, and sarcoplasmic reticulum (SR) stores were partially depleted, compared with myotubes expressing wild-type Ca(V)1.1. Our results indicate that Ca(V)1.1 functions not only to activate RyR1 during EC coupling, but also to suppress resting RyR1-mediated Ca(2+) leak from the SR, and that perturbation of Ca(V)1.1 negative regulation of RyR1 leak identifies a unique mechanism that can sensitize muscle cells to MH triggers.


Asunto(s)
Calcio/metabolismo , Caveolina 1/genética , Acoplamiento Excitación-Contracción/fisiología , Predisposición Genética a la Enfermedad/genética , Hipertermia Maligna/genética , Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Análisis de Varianza , Anestésicos/farmacología , Temperatura Corporal , Cafeína/farmacología , ADN Complementario/genética , Acoplamiento Excitación-Contracción/genética , Fluorescencia , Genes Dominantes/genética , Humanos , Microelectrodos , Mutación Missense/genética , Retículo Sarcoplasmático/metabolismo
10.
Biochim Biophys Acta ; 1828(7): 1587-97, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22982493

RESUMEN

Ca(V)1.1 is the prototype for the other nine known Ca(V) channel isoforms, yet it has functional properties that make it truly atypical of this group. Specifically, Ca(V)1.1 is expressed solely in skeletal muscle where it serves multiple purposes; it is the voltage sensor for excitation-contraction coupling and it is an L-type Ca²âº channel which contributes to a form of activity-dependent Ca²âº entry that has been termed Excitation-coupled Ca²âº entry. The ability of Ca(V)1.1 to serve as voltage-sensor for excitation-contraction coupling appears to be unique among Ca(V) channels, whereas the physiological role of its more conventional function as a Ca²âº channel has been a matter of uncertainty for nearly 50 years. In this chapter, we discuss how Ca(V)1.1 supports excitation-contraction coupling, the possible relevance of Ca²âº entry through Ca(V)1.1 and how alterations of Ca(V)1.1 function can have pathophysiological consequences. This article is part of a Special Issue entitled: Calcium channels.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Activación del Canal Iónico/fisiología , Músculo Esquelético/metabolismo , Enfermedades Musculares/fisiopatología , Animales , Humanos
11.
Biophys J ; 104(9): 1917-22, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23663834

RESUMEN

Recently, we characterized the functional properties of a mutant skeletal muscle L-type Ca(2+) channel (CaV1.1 R174W) linked to the pharmacogenetic disorder malignant hyperthermia. Although the R174W mutation neutralizes the innermost basic amino acid in the voltage-sensing S4 helix of the first conserved membrane repeat of CaV1.1, the ability of the mutant channel to engage excitation-contraction coupling was largely unaffected by the introduction of the bulky tryptophan residue. In stark contrast, the mutation ablated the ability of CaV1.1 to produce L-type current under our standard recording conditions. In this study, we have investigated the mechanism of channel dysfunction more extensively. We found that CaV1.1 R174W will open and conduct Ca(2+) in response to strong or prolonged depolarizations in the presence of the 1,4-dihydropyridine receptor agonist ±Bay K 8644. From these results, we have concluded that the R174W mutation impedes entry into both mode 1(low Po) and mode 2 (high Po) gating states and that these gating impairments can be partially overcome by maneuvers that promote entry into mode 2.


Asunto(s)
Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Activación del Canal Iónico/genética , Hipertermia Maligna/genética , Mutación Missense , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Calcio/metabolismo , Agonistas de los Canales de Calcio/farmacología , Potenciales de la Membrana , Ratones , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología
12.
Channels (Austin) ; 17(1): 2167569, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36642864

RESUMEN

The CaV1.1 voltage-gated Ca2+ channel carries L-type Ca2+ current and is the voltage-sensor for excitation-contraction (EC) coupling in skeletal muscle. Significant breakthroughs in the EC coupling field have often been close on the heels of technological advancement. In particular, CaV1.1 was the first voltage-gated Ca2+ channel to be cloned, the first ion channel to have its gating current measured and the first ion channel to have an effectively null animal model. Though these innovations have provided invaluable information regarding how CaV1.1 detects changes in membrane potential and transmits intra- and inter-molecular signals which cause opening of the channel pore and support Ca2+ release from the sarcoplasmic reticulum remain elusive. Here, we review current perspectives on this topic including the recent application of functional site-directed fluorometry.


Asunto(s)
Canales de Calcio Tipo L , Músculo Esquelético , Animales , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Músculo Esquelético/metabolismo , Acoplamiento Excitación-Contracción/fisiología , Potenciales de la Membrana/fisiología , Retículo Sarcoplasmático/metabolismo , Calcio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
13.
eNeurologicalSci ; 31: 100456, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36938367

RESUMEN

P/Q-type Ca2+ flux into nerve terminals via CaV2.1 channels is essential for neurotransmitter release at neuromuscular junctions and nearly all central synapses. Mutations in CACNA1A, the gene encoding CaV2.1, cause a spectrum of pediatric neurological disorders. We have identified a patient harboring an autosomal-dominant de novo frameshift-causing nucleotide duplication in CACNA1A (c.5018dupG). The duplicated guanine precipitated 43 residues of altered amino acid sequence beginning with a glutamine to serine substitution in CaV2.1 at position 1674 ending with a premature stop codon (CaV2.1 p.Gln1674Serfs*43). The patient presented with episodic downbeat vertical nystagmus, hypotonia, ataxia, developmental delay and febrile seizures. In patch-clamp experiments, no Ba2+ current was observed in tsA-201 cells expressing CaV2.1 p.Gln1674Serfs*43 with ß4 and α2δ-1 auxiliary subunits. The ablation of divalent flux in response to depolarization was likely attributable to the inability of CaV2.1 p.Gln1674Serfs*43 to form a complete channel pore. Our results suggest that the pathology resulting from this frameshift-inducing nucleotide duplication is a consequence of an effective haploinsufficiency.

14.
Sci Rep ; 12(1): 9186, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35655070

RESUMEN

P/Q-type Ca2+ currents mediated by CaV2.1 channels are essential for active neurotransmitter release at neuromuscular junctions and many central synapses. Mutations in CACNA1A, the gene encoding the principal CaV2.1 α1A subunit, cause a broad spectrum of neurological disorders. Typically, gain-of-function (GOF) mutations are associated with migraine and epilepsy while loss-of-function (LOF) mutations are causative for episodic and congenital ataxias. However, a cluster of severe CaV2.1 channelopathies have overlapping presentations which suggests that channel dysfunction in these disorders cannot always be defined bimodally as GOF or LOF. In particular, the R1667P mutation causes focal seizures, generalized hypotonia, dysarthria, congenital ataxia and, in one case, cerebral edema leading ultimately to death. Here, we demonstrate that the R1667P mutation causes both channel GOF (hyperpolarizing voltage-dependence of activation, slowed deactivation) and LOF (slowed activation kinetics) when expressed heterologously in tsA-201 cells. We also observed a substantial reduction in Ca2+ current density in this heterologous system. These changes in channel gating and availability/expression manifested in diminished Ca2+ flux during action potential-like stimuli. However, the integrated Ca2+ fluxes were no different when normalized to tail current amplitude measured upon repolarization from the reversal potential. In summary, our findings indicate a complex functional effect of R1667P and support the idea that pathological missense mutations in CaV2.1 may not represent exclusively GOF or LOF.


Asunto(s)
Canalopatías , Trastornos del Neurodesarrollo , Ataxia , Canales de Calcio/genética , Canales de Calcio Tipo N , Canalopatías/genética , Humanos , Hipotonía Muscular
15.
Elife ; 112022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34985413

RESUMEN

Excitation-contraction coupling (ECC) is the process by which electrical excitation of muscle is converted into force generation. Depolarization of skeletal muscle resting potential contributes to failure of ECC in diseases such as periodic paralysis, intensive care unit acquired weakness and possibly fatigue of muscle during vigorous exercise. When extracellular K+ is raised to depolarize the resting potential, failure of ECC occurs suddenly, over a narrow range of resting potentials. Simultaneous imaging of Ca2+ transients and recording of action potentials (APs) demonstrated failure to generate Ca2+ transients when APs peaked at potentials more negative than -30mV. An AP property that closely correlated with failure of the Ca2+ transient was the integral of AP voltage with respect to time. Simultaneous recording of Ca2+ transients and APs with electrodes separated by 1.6mm revealed AP conduction fails when APs peak below -21mV. We hypothesize propagation of APs and generation of Ca2+ transients are governed by distinct AP properties: AP conduction is governed by AP peak, whereas Ca2+ release from the sarcoplasmic reticulum is governed by AP integral. The reason distinct AP properties may govern distinct steps of ECC is the kinetics of the ion channels involved. Na channels, which govern propagation, have rapid kinetics and are insensitive to AP width (and thus AP integral) whereas Ca2+ release is governed by gating charge movement of Cav1.1 channels, which have slower kinetics such that Ca2+ release is sensitive to AP integral. The quantitative relationships established between resting potential, AP properties, AP conduction and Ca2+ transients provide the foundation for future studies of failure of ECC induced by depolarization of the resting potential.


Asunto(s)
Potenciales de Acción/fisiología , Acoplamiento Excitación-Contracción , Potenciales de la Membrana , Músculo Esquelético/fisiología , Animales , Ratones
16.
Nat Commun ; 13(1): 7556, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494348

RESUMEN

Ca2+ influx through high-voltage-activated calcium channels (HVACCs) controls diverse cellular functions. A critical feature enabling a singular signal, Ca2+ influx, to mediate disparate functions is diversity of HVACC pore-forming α1 and auxiliary CaVß1-CaVß4 subunits. Selective CaVα1 blockers have enabled deciphering their unique physiological roles. By contrast, the capacity to post-translationally inhibit HVACCs based on CaVß isoform is non-existent. Conventional gene knockout/shRNA approaches do not adequately address this deficit owing to subunit reshuffling and partially overlapping functions of CaVß isoforms. Here, we identify a nanobody (nb.E8) that selectively binds CaVß1 SH3 domain and inhibits CaVß1-associated HVACCs by reducing channel surface density, decreasing open probability, and speeding inactivation. Functionalizing nb.E8 with Nedd4L HECT domain yielded Chisel-1 which eliminated current through CaVß1-reconstituted CaV1/CaV2 and native CaV1.1 channels in skeletal muscle, strongly suppressed depolarization-evoked Ca2+ influx and excitation-transcription coupling in hippocampal neurons, but was inert against CaVß2-associated CaV1.2 in cardiomyocytes. The results introduce an original method for probing distinctive functions of ion channel auxiliary subunit isoforms, reveal additional dimensions of CaVß1 signaling in neurons, and describe a genetically-encoded HVACC inhibitor with unique properties.


Asunto(s)
Canales de Calcio , Miocitos Cardíacos , Canales de Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Neuronas/metabolismo , Dominios Homologos src , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo
17.
Cell Calcium ; 98: 102439, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34261001

RESUMEN

The RGK (Rad, Rem, Rem2 and Gem/Kir) family of small GTPases are potent endogenous inhibitors of voltage-gated Ca2+ channels (VGCCs). While the impact of RGK proteins on cardiac physiology has been investigated extensively, much less is known regarding their influence on skeletal muscle biology. Thus, the purpose of this article is to establish a basis for future investigation into the role of RGK proteins in regulating the skeletal muscle excitation-contraction (EC) coupling complex via modulation of the L-type CaV1.1 VGCC. The pathological consequences of elevated muscle RGK protein expression in Type II Diabetes, Amyotrophic Lateral Sclerosis (ALS), Duchenne's Muscular Dystrophy and traumatic nerve injury are also discussed.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proteínas de Unión al GTP Monoméricas , Canales de Calcio Tipo L , Humanos , Proteínas de Unión al GTP Monoméricas/metabolismo , Músculo Esquelético/metabolismo
18.
Front Mol Neurosci ; 12: 329, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32116539

RESUMEN

The P/Q-type CaV2.1 channel regulates neurotransmitter release at neuromuscular junctions (NMJ) and many central synapses. CACNA1A encodes the pore-containing α1A subunit of CaV2.1 channels. In humans, de novo CACNA1A mutations result in a wide spectrum of neurological, neuromuscular, and movement disorders, such as familial hemiplegic migraine type 1 (FHM1), episodic ataxia type 2 (EA2), as well as a more recently discovered class of more severe disorders, which are characterized by ataxia, hypotonia, cerebellar atrophy, and cognitive/developmental delay. Heterologous expression of CaV2.1 channels has allowed for an understanding of the consequences of CACNA1A missense mutations on channel function. In contrast, a mechanistic understanding of how specific CACNA1A mutations lead in vivo to the resultant phenotypes is lacking. In this review, we present the zebrafish as a model to both study in vivo mechanisms of CACNA1A mutations that result in synaptic and behavioral defects and to screen for effective drug therapies to combat these and other CaV2.1 channelopathies.

19.
J Gen Physiol ; 151(6): 850-859, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31015257

RESUMEN

Ca2+ flux into axon terminals via P-/Q-type CaV2.1 channels is the trigger for neurotransmitter vesicle release at neuromuscular junctions (NMJs) and many central synapses. Recently, an arginine to proline substitution (R1673P) in the S4 voltage-sensing helix of the fourth membrane-bound repeat of CaV2.1 was linked to a severe neurological disorder characterized by generalized hypotonia, ataxia, cerebellar atrophy, and global developmental delay. The R1673P mutation was proposed to cause a gain of function in CaV2.1 leading to neuronal Ca2+ toxicity based on the ability of the mutant channel to rescue the photoreceptor response in CaV2.1-deficient Drosophila cacophony larvae. Here, we show that the corresponding mutation in rat CaV2.1 (R1624P) causes a profound loss of channel function; voltage-clamp analysis of tsA-201 cells expressing this mutant channel revealed an ∼25-mV depolarizing shift in the voltage dependence of activation. This alteration in activation implies that a significant fraction of CaV2.1 channels resident in presynaptic terminals are unlikely to open in response to an action potential, thereby increasing the probability of synaptic failure at both NMJs and central synapses. Indeed, the mutant channel supported only minimal Ca2+ flux in response to an action potential-like waveform. Application of GV-58, a compound previously shown to stabilize the open state of wild-type CaV2.1 channels, partially restored Ca2+ current by shifting mutant activation to more hyperpolarizing potentials and slowing deactivation. Consequently, GV-58 also rescued a portion of Ca2+ flux during action potential-like stimuli. Thus, our data raise the possibility that therapeutic agents that increase channel open probability or prolong action potential duration may be effective in combatting this and other severe neurodevelopmental disorders caused by loss-of-function mutations in CaV2.1.


Asunto(s)
Canales de Calcio Tipo N/genética , Activación del Canal Iónico/genética , Mutación/genética , Trastornos del Neurodesarrollo/genética , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Activación del Canal Iónico/fisiología , Mutación/fisiología , Trastornos del Neurodesarrollo/fisiopatología , Unión Neuromuscular/genética , Unión Neuromuscular/fisiopatología , Neuronas/fisiología , Técnicas de Placa-Clamp/métodos , Terminales Presinápticos/fisiología , Conejos , Ratas , Sinapsis/genética , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología
20.
J Vis Exp ; (126)2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28892032

RESUMEN

For years, distinctions between skeletal muscle fiber types were best visualized by myosin-ATPase staining. More recently, immunohistochemical staining of myosin heavy chain (MyHC) isoforms has emerged as a finer discriminator of fiber-type. Type I, type IIA, type IIX and type IIB fibers can now be identified with precision based on their MyHC profile; however, manual analysis of these data can be slow and down-right tedious. In this regard, rapid, accurate assessment of fiber-type composition and morphology is a very desirable tool. Here, we present a protocol for state-of-the-art immunohistochemical staining of MyHCs in frozen sections obtained from mouse hindlimb muscle in concert with a novel semi-automated algorithm that accelerates analysis of fiber-type and fiber morphology. As expected, the soleus muscle displayed staining for type I and type IIA fibers, but not for type IIX or type IIB fibers. On the other hand, the tibialis anterior muscle was composed predominantly of type IIX and type IIB fibers, a small fraction of type IIA fibers and little or no type I fibers. Several image transformations were used to generate probability maps for the purpose of measuring different aspects of fiber morphology (i.e., cross-sectional area (CSA), maximal and minimal Feret diameter). The values obtained for these parameters were then compared with manually-obtained values. No significant differences were observed between either mode of analysis with regards to CSA, maximal or minimal Feret diameter (all p > 0.05), indicating the accuracy of our method. Thus, our immunostaining analysis protocol may be applied to the investigation of effects on muscle composition in many models of aging and myopathy.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Animales , Humanos , Inmunohistoquímica , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA