Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Fluoresc ; 33(1): 209-221, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36399249

RESUMEN

In the present study, we have successfully synthesized and characterized carboxy methyl cashew gum modified gold nanoparticles (CMCG-AuNPs) via a microwave-assisted method and used as a calorimetric probe for selective detection of Hg2+ ions as well as catalytic reduction of methyl red in an aqueous medium. The effect of different parameters including concentration and irradiation time on the formation of CMCG-AuNPs was also investigated. The presence of strong surface plasmon resonance (SPR) peak in the visible region indicated the formation of AuNPs. The characterization techniques were identified the interaction between the CMCG and AuNPs with estimation of size and morphology. The face centred cubic (FCC) crystal structure was identified by using XRD and supporting with SAED pattern. TEM images of CMCG-AuNPs were exhibited as polydispersed with spherical in shape and the average particle size was 12 ± 3 nm. The synthesized CMCG-AuNPs were utilized to sensing Hg2+ ions in an aqueous medium, the presence of Hg2+ ions selectively among other metal ions, the CMCG-AuNPs were aggregated by changing the color from wine red to purple blue accompanied by change in the position of SPR peak and intensity. It was observed as a strong linear relationship based on the change in intensity, the limit of detection was determined to be 0.277 nM. The catalytic activity was also examined for the reduction of methyl red (MR) in the presence of CMCG-AuNPs was completed within 12 min and followed pseudo-first order kinetics with a rate constant of 0.261 min-1. From the obtained results, the synthesized CMCG-AuNPs were useful for detection of heavy metal ions as well as toxic pollutants degradation via a green method, and utilized sensing, environmental, and biomedical application in future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA