Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39126063

RESUMEN

Small extracellular vesicles (EVs) play a pivotal role in intercellular communication across various physiological and pathological contexts. Despite their growing significance as disease biomarkers and therapeutic targets in biomedical research, the lack of reliable isolation techniques remains challenging. This study characterizes vesicles that were isolated from conditioned culture media (CCM) sourced from three myeloma cell lines (MM.1S, ANBL-6, and ALMC-1), and from the plasma of healthy donors and multiple myeloma patients. We compared the efficacy, reproducibility, and specificity of isolating small EVs using sucrose cushion ultracentrifugation (sUC) vs. ultrafiltration combined with size-exclusion chromatography (UF-SEC). Our results demonstrate that UF-SEC emerges as a more practical, efficient, and consistent method for EV isolation, outperforming sUC in the yield of EV recovery and exhibiting lower variability. Additionally, the comparison of EV characteristics among the three myeloma cell lines revealed distinct biomarker profiles. Finally, our results suggest that HBS associated with Tween 20 improves EV recovery and preservation over PBS. Standardization of small EV isolation methods is imperative, and our comparative evaluation represents a significant step toward achieving this goal.


Asunto(s)
Cromatografía en Gel , Vesículas Extracelulares , Mieloma Múltiple , Sacarosa , Ultracentrifugación , Mieloma Múltiple/patología , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Ultracentrifugación/métodos , Cromatografía en Gel/métodos , Línea Celular Tumoral , Reproducibilidad de los Resultados , Medios de Cultivo Condicionados/química
2.
Front Oncol ; 12: 860849, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35800053

RESUMEN

Multiple myeloma (MM) is a hematological malignancy of clonal antibody-secreting plasma cells (PCs). MM diagnosis and risk stratification rely on bone marrow (BM) biopsy, an invasive procedure prone to sample bias. Liquid biopsies, such as extracellular vesicles (EV) in peripheral blood (PB), hold promise as new minimally invasive tools. Real-world studies analyzing patient-derived EV proteome are rare. Here, we characterized a small EV protein content from PB and BM samples in a cohort of 102 monoclonal gammopathies patients routinely followed in the clinic and 223 PB and 111 BM samples were included. We investigated whether EV protein and particle concentration could predict an MM patient prognosis. We found that a high EV protein/particle ratio, or EV cargo >0.6 µg/108 particles, is related to poorer survival and immune dysfunction. These results were supported at the protein level by mass spectrometry. We report a set of PB EV-proteins (PDIA3, C4BPA, BTN1A1, and TNFSF13) with a new biomarker potential for myeloma patient outcomes. The high proteomic similarity between PB and BM matched pairs supports the use of circulating EV as a counterpart of the BM EV proteome. Overall, we found that the EV protein content is related to patient outcomes, such as survival, immune dysfunction, and possibly treatment response.

3.
Front Immunol ; 13: 909880, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874665

RESUMEN

Multiple myeloma (MM), the third most frequent hematological cancer worldwide, is characterized by the proliferation of neoplastic plasma cells in the bone marrow (BM). One of the hallmarks of MM is a permissive BM microenvironment. Increasing evidence suggests that cell-to-cell communication between myeloma and immune cells via tumor cell-derived extracellular vesicles (EV) plays a key role in the pathogenesis of MM. Hence, we aimed to explore BM immune alterations induced by MM-derived EV. For this, we inoculated immunocompetent BALB/cByJ mice with a myeloma cell line, MOPC315.BM, inducing a MM phenotype. Upon tumor establishment, characterization of the BM microenvironment revealed the expression of both activation and suppressive markers by lymphocytes, such as granzyme B and PD-1, respectively. In addition, conditioning of the animals with MOPC315.BM-derived EV, before transplantation of the MOPC315.BM tumor cells, did not anticipate the disease phenotype. However, it induced features of suppression in the BM milieu, such as an increase in PD-1 expression by CD4+ T cells. Overall, our findings reveal the involvement of MOPC315.BM-derived EV protein content as promoters of immune niche remodeling, strengthening the importance of assessing the mechanisms by which MM may impact the immune microenvironment.


Asunto(s)
Vesículas Extracelulares , Mieloma Múltiple , Animales , Médula Ósea , Línea Celular Tumoral , Vesículas Extracelulares/metabolismo , Ratones , Receptor de Muerte Celular Programada 1/metabolismo , Microambiente Tumoral
4.
Cancers (Basel) ; 13(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562441

RESUMEN

Multiple myeloma (MM) is one of the most prevalent hematological cancers worldwide, characterized by the clonal expansion of neoplastic plasma cells in the bone marrow (BM). A combination of factors is implicated in disease progression, including BM immune microenvironment changes. Increasing evidence suggests that the disruption of immunological processes responsible for myeloma control ultimately leads to the escape from immune surveillance and resistance to immune effector function, resulting in an active form of myeloma. In fact, one of the hallmarks of MM is the development of a permissive BM milieu that provides a growth advantage to the malignant cells. Consequently, a better understanding of how myeloma cells interact with the BM niche compartments and disrupt the immune homeostasis is of utmost importance to develop more effective treatments. This review focuses on the most up-to-date knowledge regarding microenvironment-related mechanisms behind MM immune evasion and suppression, as well as promising molecules that are currently under pre-clinical tests targeting immune populations.

5.
Cancers (Basel) ; 13(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799565

RESUMEN

Despite the improvement of patient's outcome obtained by the current use of immunomodulatory drugs, proteasome inhibitors or anti-CD38 monoclonal antibodies, multiple myeloma (MM) remains an incurable disease. More recently, the testing in clinical trials of novel drugs such as anti-BCMA CAR-T cells, antibody-drug conjugates or bispecific antibodies broadened the possibility of improving patients' survival. However, thus far, these treatment strategies have not been able to steadily eliminate all malignant cells, and the aim has been to induce a long-term complete response with minimal residual disease (MRD)-negative status. In this sense, approaches that target not only myeloma cells but also the surrounding microenvironment are promising strategies to achieve a sustained MRD negativity with prolonged survival. This review provides an overview of current and future strategies used for immunomodulation of MM focusing on the impact on bone marrow (BM) immunome.

6.
J Mol Med (Berl) ; 98(4): 513-525, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32246161

RESUMEN

Multiple myeloma (MM) is a challenging, progressive, and highly heterogeneous hematological malignancy. MM is characterized by multifocal proliferation of neoplastic plasma cells in the bone marrow (BM) and sometimes in extramedullary organs. Despite the availability of novel drugs and the longer median overall survival, some patients survive more than 10 years while others die rapidly. This heterogeneity is mainly driven by biological characteristics of MM cells, including genetic abnormalities. Disease progressions are mainly due to the inability of drugs to overcome refractory disease and inevitable drug-resistant relapse. In clinical practice, a bone marrow biopsy, mostly performed in one site, is still used to access the genetics of MM. However, BM biopsy use is limited by its invasive nature and by often not accurately reflecting the mutational profile of MM. Recent insights into the genetic landscape of MM provide a valuable opportunity to implement precision medicine approaches aiming to enable better patient profiling and selection of targeted therapies. In this review, we explore the use of the emerging field of liquid biopsies in myeloma patients considering current unmet medical needs, such as assessing the dynamic mutational landscape of myeloma, early predictors of treatment response, and a less invasive response monitoring.


Asunto(s)
Biopsia Líquida/métodos , Mieloma Múltiple/diagnóstico , Medicina de Precisión , Biomarcadores de Tumor , Médula Ósea/patología , MicroARN Circulante , ADN Tumoral Circulante , Vesículas Extracelulares/metabolismo , Humanos , Mieloma Múltiple/etiología , Mieloma Múltiple/metabolismo , Células Neoplásicas Circulantes/patología , Medicina de Precisión/métodos , Medicina de Precisión/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA