RESUMEN
Surface sensing is a critical process that promotes the transition to a biofilm lifestyle. Several surface-sensing mechanisms have been described for a range of species, most involving surface appendages, such as flagella and pili. Pseudomonas aeruginosa uses the Wsp chemosensory-like signal transduction pathway to sense surfaces and promote biofilm formation. The methyl-accepting chemotaxis protein WspA recognizes an unknown surface-associated signal and initiates a phosphorylation cascade that activates the diguanylate cyclase WspR. We conducted a screen for Wsp-activating compounds and found that chemicals that impact the cell envelope induce Wsp signaling, increase intracellular c-di-GMP levels, and can promote surface attachment. To isolate the Wsp system from other P. aeruginosa surface-sensing systems, we heterologously expressed it in Escherichia coli and found it sufficient for sensing surfaces and the chemicals identified in our screen. Using well-characterized reporters for different E. coli cell envelope stress responses, we then determined that Wsp sensitivity overlapped with multiple E. coli cell envelope stress-response systems. Using mutational and CRISPRi analysis, we found that misfolded proteins in the periplasm appear to be a major stimulus of the Wsp system. Finally, we show that surface attachment appears to have an immediate, observable effect on cell envelope integrity. Collectively, our results provide experimental evidence that cell envelope stress represents an important feature of surface sensing in P. aeruginosa.
Asunto(s)
Pared Celular , Pseudomonas aeruginosa , Biopelículas , Membrana Celular/metabolismo , Periplasma , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismoRESUMEN
Quorum sensing (QS), a cell-to-cell communication system involved in the synchronization of bacterial behavior in a cell-density-dependent manner has been shown to control phenotypes such as luminescence, virulence, and biofilm formation. The marine strain, Shewanella woodyi MS32 has been identified as a luminous bacterium. Very little information is known on this bacterium, in particular if its luminescence and biofilm formation are controlled by QS. In this study, we have demonstrated that S. woodyi MS32 emits luminescence in planktonic and sessile conditions. The putative QS regulatory genes homologous to luxI and luxR identified in the S. woodyi MS32 genome, named swoI and swoR, are divergently transcribed and are not genetically linked to the lux operon in contrast with its closest parent Shewanella hanedai and with Aliivibrio fischeri. Interestingly, the phylogenetic analysis based on the SwoI and SwoR sequences shows that a separate horizontal gene transfer (HGT) occurred for the regulatory genes and for the lux operon. Functional analyses demonstrate that the swoI and swoR mutants were non-luminescent. Expression of lux genes was impaired in the QS regulatory mutants. N-octanoyl-L-homoserine lactone (C8-HSL) identified using liquid chromatography mass spectrometry in the wild-type strain (but not in ΔswoI) can induce S. woodyi luminescence. No significant difference has been detected between the wild-type and mutants on adhesion and biofilm formation in the conditions tested. Therefore, we have demonstrated that the luxCDABEG genes of S. woodyi MS32 are involved in luminescence emission and that the swoR/swoI genes, originated from a separate HGT, regulate luminescence through C8-HSL production.
Asunto(s)
Homoserina/análogos & derivados , Luminiscencia , Percepción de Quorum , Shewanella/fisiología , Homoserina/biosíntesis , LactonasRESUMEN
The MarR family transcriptional regulator CouR, from the soil bacterium Rhodopseudomonas palustris CGA009, has recently been shown to negatively regulate a p-coumarate catabolic operon. Unlike most characterized MarR repressors that respond to small metabolites at concentrations in the millimolar range, repression by CouR is alleviated by the 800-Da ligand p-coumaroyl-CoA with high affinity and specificity. Here we report the crystal structures of ligand-free CouR as well as the complex with p-coumaroyl-CoA, each to 2.1-Å resolution, and the 2.85-Å resolution cocrystal structure of CouR bound to an oligonucleotide bearing the cognate DNA operator sequence. In combination with binding experiments that uncover specific residues important for ligand and DNA recognition, these structures provide glimpses of a MarR family repressor in all possible states, providing an understanding of the molecular basis of DNA binding and the conformation alterations that accompany ligand-induced dissociation for activation of the operon.
Asunto(s)
Acilcoenzima A/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Operón , Proteínas Represoras/metabolismo , Rhodopseudomonas/genética , Acilcoenzima A/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , Clonación Molecular , Ácidos Cumáricos/metabolismo , Cristalografía por Rayos X , Conformación Proteica , Proteínas Represoras/química , Proteínas Represoras/genética , Rhodopseudomonas/química , Rhodopseudomonas/metabolismo , Activación TranscripcionalRESUMEN
Cyclic diguanosine monophosphate (c-di-GMP) is a second messenger that controls diverse functions in bacteria, including transitions from planktonic to biofilm lifestyles, virulence, motility, and cell cycle. Here we describe TolR, a hybrid two-component system (HTCS), from the ß-proteobacterium Azoarcus sp. strain CIB that degrades c-di-GMP in response to aromatic hydrocarbons, including toluene. This response protects cells from toluene toxicity during anaerobic growth. Whereas wild-type cells tolerated a sudden exposure to a toxic concentration of toluene, a tolR mutant strain or a strain overexpressing a diguanylate cyclase gene lost viability upon toluene shock. TolR comprises an N-terminal aromatic hydrocarbon-sensing Per-Arnt-Sim (PAS) domain, followed by an autokinase domain, a response regulator domain, and a C-terminal c-di-GMP phosphodiesterase (PDE) domain. Autophosphorylation of TolR in response to toluene exposure initiated an intramolecular phosphotransfer to the response regulator domain that resulted in c-di-GMP degradation. The TolR protein was engineered as a functional sensor histidine kinase (TolRSK) and an independent response regulator (TolRRR). This classic two-component system (CTCS) operated less efficiently than TolR, suggesting that TolR was evolved as a HTCS to optimize signal transduction. Our results suggest that TolR enables Azoarcus sp. CIB to adapt to toxic aromatic hydrocarbons under anaerobic conditions by modulating cellular levels of c-di-GMP. This is an additional role for c-di-GMP in bacterial physiology.
Asunto(s)
Azoarcus/metabolismo , Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de la Membrana/metabolismo , Tolueno/toxicidad , Azoarcus/efectos de los fármacos , Proteínas Bacterianas/genética , GMP Cíclico/metabolismo , Proteínas de la Membrana/genéticaRESUMEN
Bacterial biofilm formation during chronic infections confers increased fitness, antibiotic tolerance, and cytotoxicity. In many pathogens, the transition from a planktonic lifestyle to collaborative, sessile biofilms represents a regulated process orchestrated by the intracellular second-messenger c-di-GMP. A main effector for c-di-GMP signaling in the opportunistic pathogen Pseudomonas aeruginosa is the transcription regulator FleQ. FleQ is a bacterial enhancer-binding protein (bEBP) with a central AAA+ ATPase σ(54)-interaction domain, flanked by a C-terminal helix-turn-helix DNA-binding motif and a divergent N-terminal receiver domain. Together with a second ATPase, FleN, FleQ regulates the expression of flagellar and exopolysaccharide biosynthesis genes in response to cellular c-di-GMP. Here we report structural and functional data that reveal an unexpected mode of c-di-GMP recognition that is associated with major conformational rearrangements in FleQ. Crystal structures of FleQ's AAA+ ATPase domain in its apo-state or bound to ADP or ATP-γ-S show conformations reminiscent of the activated ring-shaped assemblies of other bEBPs. As revealed by the structure of c-di-GMP-complexed FleQ, the second messenger interacts with the AAA+ ATPase domain at a site distinct from the ATP binding pocket. c-di-GMP interaction leads to active site obstruction, hexameric ring destabilization, and discrete quaternary structure transitions. Solution and cell-based studies confirm coupling of the ATPase active site and c-di-GMP binding, as well as the functional significance of crystallographic interprotomer interfaces. Taken together, our data offer unprecedented insight into conserved regulatory mechanisms of gene expression under direct c-di-GMP control via FleQ and FleQ-like bEBPs.
Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , GMP Cíclico/análogos & derivados , Pseudomonas aeruginosa/fisiología , Transactivadores/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Secuencia de Bases , Sitios de Unión , Calorimetría , Secuencia Conservada , Reactivos de Enlaces Cruzados , Cristalografía por Rayos X , GMP Cíclico/farmacología , ADN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Regiones Promotoras Genéticas/genética , Multimerización de Proteína/efectos de los fármacos , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Alineación de Secuencia , Soluciones , Temperatura , Transactivadores/química , Transcripción GenéticaRESUMEN
UNLABELLED: The transcription factor FleQ from Pseudomonas aeruginosa derepresses expression of genes involved in biofilm formation when intracellular levels of the second messenger cyclic diguanosine monophosphate (c-di-GMP) are high. FleQ also activates transcription of flagellar genes, and the expression of these genes is highest at low intracellular c-di-GMP. FleQ thus plays a central role in mediating the transition between planktonic and biofilm lifestyles of P. aeruginosa. Previous work showed that FleQ controls expression of the pel operon for Pel exopolysaccharide biosynthesis by converting from a repressor to an activator upon binding c-di-GMP. To explore the activity of FleQ further, we carried out DNase I footprinting at three additional biofilm gene promoters, those of psl, cdrAB, and PA2440. The expression of cdrAB, encoding a cell surface adhesin, was sufficiently responsive to FleQ to allow us to carry out in vivo promoter assays. The results showed that, similarly to our observations with the pel operon, FleQ switches from a repressor to an activator of cdrAB gene expression in response to c-di-GMP. From the footprinting data, we identified a FleQ DNA binding consensus sequence. A search for this conserved sequence in bacterial genome sequences led to the identification of FleQ binding sites in the promoters of the siaABCD operon, important for cell aggregation, and the bdlA gene, important for biofilm dispersal, in P. aeruginosa. We also identified FleQ binding sites upstream of lapA-like adhesin genes in other Pseudomonas species. IMPORTANCE: The transcription factor FleQ is widely distributed in Pseudomonas species. In all species examined, it is a master regulator of flagellar gene expression. It also regulates diverse genes involved in biofilm formation in P. aeruginosa when intracellular levels of the second messenger c-di-GMP are high. Unlike flagellar genes, biofilm-associated genes are not always easy to recognize in genome sequences. Here, we identified a consensus DNA binding sequence for FleQ. This allowed us to survey Pseudomonas strains and find new genes that are likely regulated by FleQ and possibly involved in biofilm formation.
Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Secuencia de Consenso , ADN Bacteriano/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiología , Transactivadores/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica/fisiología , Genoma Bacteriano , Unión Proteica , Pseudomonas aeruginosa/genética , Transactivadores/química , Transactivadores/genéticaRESUMEN
The transcription factor FleQ is a bacterial AAA+ ATPase enhancer-binding protein that is the master activator of flagella gene expression in the opportunistic bacterial pathogen Pseudomonas aeruginosa. Homologs of FleQ are present in all Pseudomonas species and in many polarly flagellated gamma proteobacteria. Cyclic diguanosine monophosphate (c-di-GMP) is a second messenger that controls the transition between planktonic and biofilm modes of growth in bacteria in response to diverse environmental signals. C-di-GMP binds to FleQ to dampen its activity, causing down-regulation of flagella gene expression. This action is potentiated in the simultaneous presence of another protein, FleN. We explored the effect of c-di-GMP and FleN on the ATPase activity of FleQ and found that a relatively low concentration of c-di-GMP competitively inhibited FleQ ATPase activity, suggesting that c-di-GMP competes with ATP for binding to the Walker A motif of FleQ. Confirming this, a FleQ Walker A motif mutant failed to bind c-di-GMP. FleN, whose gene is regulated by FleQ, also inhibited FleQ ATPase activity, and FleQ ATPase activity was much more inhibited by c-di-GMP in the presence of FleN than in its absence. These results indicate that FleN and c-di-GMP cooperate to inhibit FleQ activity and, by extension, flagella synthesis in P. aeruginosa. The Walker A motif of FleQ is perfectly conserved, opening up the possibility that other AAA+ ATPases may respond to c-di-GMP.
Asunto(s)
Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Flagelos/fisiología , Regulación Bacteriana de la Expresión Génica/genética , Pseudomonas aeruginosa/fisiología , Transactivadores/metabolismo , Secuencias de Aminoácidos/genética , Proteínas Bacterianas/antagonistas & inhibidores , Cromatografía en Gel , GMP Cíclico/metabolismo , GMP Cíclico/farmacología , Electroforesis en Gel de Poliacrilamida , Flagelos/metabolismo , Mutagénesis , Pseudomonas aeruginosa/metabolismo , Transactivadores/antagonistas & inhibidoresRESUMEN
Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) modulates the transition between planktonic and biofilm life styles. In response to c-di-GMP, the enhancer binding protein FleQ from Pseudomonas aeruginosa derepresses the expression of Pel exopolysaccharide genes required for biofilm formation when a second protein, FleN is present. A model is that binding of c-di-GMP to FleQ induces its dissociation from the pelA promoter allowing RNA polymerase to access this site. To test this, we analyzed pelA DNA footprinting patterns with various combinations of FleQ, FleN and c-di-GMP, coupled to in vivo promoter activities. FleQ binds to two sites called box 1 and 2. FleN binds to FleQ bound at these sites causing the intervening DNA to bend. Binding of c-di-GMP to FleQ relieves the DNA distortion but FleQ remains bound to the two sites. Analysis of wild type and mutated versions of pelA-lacZ transcriptional fusions suggests that FleQ represses gene expression from box 2 and activates gene expression in response to c-di-GMP from box 1. The role of c-di-GMP is thus to convert FleQ from a repressor to an activator. The mechanism of action of FleQ is distinct from that of other bacterial transcription factors that both activate and repress gene expression from a single promoter.
Asunto(s)
Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Regulación Bacteriana de la Expresión Génica , Operón , Regiones Promotoras Genéticas , Pseudomonas aeruginosa/genética , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , GMP Cíclico/metabolismo , ADN Bacteriano/metabolismo , Pseudomonas aeruginosa/metabolismoRESUMEN
Bradyrhizobium diazoefficiens USDA110 is one of the most effective nitrogen-fixing symbionts of soybeans. Here we carried out a large-scale transposon insertion sequencing (Tn-seq) analysis of strain Bd110spc4, which is derived from USDA110, with the goal of increasing available resources for identifying genes crucial for the survival of this plant symbiont under diverse conditions. We prepared two transposon (Tn) insertion libraries of Bd110spc4 with 155,042 unique Tn insertions when the libraries were combined, which is an average of one insertion every 58.7 bp of the reference USDA110 genome. Application of bioinformatic filtering steps to remove genes too small to be expected to have Tn insertions, resulted in a list of genes that were classified as putatively essential. Comparison of this gene set with genes putatively essential for the growth of the closely related alpha-proteobacterium, Rhodopseudomonas palustris, revealed a small set of five genes that may be collectively essential for closely related members of the family Bradyrhizobiaceae. This group includes bacteria with diverse lifestyles ranging from plant symbionts to animal-associated species to free-living species.
Asunto(s)
Bradyrhizobium/genética , Elementos Transponibles de ADN/genética , Proteínas Bacterianas/genética , Fijación del Nitrógeno/genética , Rhodopseudomonas/genéticaRESUMEN
Shewanella oneidensis uses a wide range of terminal electron acceptors for respiration. In this study, we show that the chemotactic response of S. oneidensis to anaerobic electron acceptors requires functional electron transport systems. Deletion of the genes encoding dimethyl sulphoxide and trimethylamine N-oxide reductases, or inactivation of these molybdoenzymes as well as nitrate reductase by addition of tungstate, abolished electron acceptor taxis. Moreover, addition of nigericin prevented taxis towards trimethylamine N-oxide, dimethyl sulphoxide, nitrite, nitrate and fumarate, showing that this process depends on the DeltapH component of the proton motive force. These data, together with those concerning response to metals (Bencharit and Ward, 2005), support the idea that, in S. oneidensis, taxis towards electron acceptors is governed by an energy taxis mechanism. Surprisingly, energy taxis in S. oneidensis is not mediated by the PAS-containing chemoreceptors but rather by a chemoreceptor (SO2240) containing a Cache domain. Four other chemoreceptors also play a minor role in this process. These results indicate that energy taxis can be mediated by new types of chemoreceptors.
Asunto(s)
Quimiotaxis , Transporte de Electrón , Metabolismo Energético , Shewanella/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Concentración de Iones de Hidrógeno , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Metilaminas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo , Eliminación de Secuencia , Shewanella/genéticaRESUMEN
Free-living amoeba are members of microbial communities such as biofilms in terrestrial, fresh, and marine habitats. Although they are known to live in close association with bacteria in many ecosystems such as biofilms, they are considered to be major bacterial predators in many ecosystems. Little is known on the relationship between protozoa and marine bacteria in microbial communities, more precisely on how bacteria are able survive in environmental niches where these bacterial grazers also live. The objective of this work is to study the interaction between the axenized ubiquitous amoeba Acanthamoeba castellanii and four marine bacteria isolated from immersed biofilm, in order to evaluate if they would be all grazed upon by amoeba or if they would be able to survive in the presence of their predator. At a low bacteria-to-amoeba ratio, we show that each bacterium is phagocytized and follows a singular intracellular path within this host cell, which appears to delay or to prevent bacterial digestion. In particular, one of the bacteria was found in the amoeba nucleolar compartment whereas another strain was expelled from the amoeba in vesicles. We then looked at the fate of the bacteria grown in a higher bacteria-to-amoeba ratio, as a preformed mono- or multi-species biofilm in the presence of A. castellanii. We show that all biofilms were subjected to detachment from the surface in the presence of the amoeba or its supernatant. Overall, these results show that bacteria, when facing the same predator, exhibit a variety of escape mechanisms at the cellular and population level, when we could have expected a simple bacterial grazing. Therefore, this study unravels new insights into the survival of environmental bacteria when facing predators that they could encounter in the same microbial communities.
RESUMEN
Microbial communities composition is largely shaped by interspecies competition or cooperation in most environments. Ecosystems are made of various dynamic microhabitats where microbial communities interact with each other establishing metabolically interdependent relationships. Very limited information is available on multispecies biofilms and their microhabitats related to natural environments. The objective of this study is to understand how marine bacteria isolated from biofilms in the Mediterranean Sea interact and compete with each other when cultivated in multispecies biofilms. Four strains (Persicivirga mediterranea TC4, Polaribacter sp. TC5, Shewanella sp. TC10 and TC11) with different phenotypical traits and abilities to form a biofilm have been selected from a previous study. Here, the results show that these strains displayed a different capacity to form a biofilm in static versus dynamic conditions where one strain, TC11, was highly susceptible to the flux. These bacteria appeared to be specialized in the secretion of one or two exopolymers. Only TC5 seemed to secrete inhibitory molecule(s) in its supernatant, with a significant effect on TC10. Most of the strains negatively impacted each other, except TC4 and TC10, which presented a synergetic effect in the two and three species biofilms. Interestingly, these two strains produced a newly secreted compound when grown in dual-species versus mono-species biofilms. TC5, which induced a strong inhibition on two of its partners in dual-species biofilms, outfitted the other bacteria in a four-species biofilm. Therefore, understanding how bacteria respond to interspecific interactions should help comprehending the dynamics of bacterial populations in their ecological niches.
RESUMEN
The transition of bacteria from a planktonic lifestyle to a collaborative, sessile biofilm lifestyle is a regulated process orchestrated by the intracellular second-messenger c-di-GMP (bis-(3'-5')-cyclic dimeric guanosine monophosphate). To modulate this transition, c-di-GMP acts at the transcriptional, posttranscriptional, and posttranslational levels. In this chapter, we describe a method to study of how a transcriptional regulator modulates gene expression in response to c-di-GMP binding. DNase I footprinting is a valuable tool for use in analyzing how regulatory proteins bind to DNA, the location of their binding sites or how c-di-GMP affects their binding to DNA. This chapter describes a protocol for nonradiochemical DNase I footprinting experiments using a capillary electrophoresis method based on the interaction of the Pseudomonas aeruginosa FleQ protein with the promoter regions of biofilm-related genes.
Asunto(s)
GMP Cíclico/análogos & derivados , Huella de ADN/métodos , Proteínas de Unión al ADN/metabolismo , Sitios de Unión , GMP Cíclico/metabolismo , ADN Bacteriano , Desoxirribonucleasa I/metabolismo , Electroforesis Capilar/métodos , Colorantes Fluorescentes , Regiones Promotoras Genéticas , Coloración y Etiquetado , Factores de Transcripción/metabolismoRESUMEN
Bacteria, and in particular marine bacteria, can be found in environments that are poor in nutrients. To survive, they are able to move toward more favorable niches by a mechanism called chemotaxis, whose first step consists in the detection of substrates by chemoreceptors. We developed a chemotactic assay enabling rapid testing of several hundred different solutes and we identified several molecules eliciting a chemotactic response from two aquatic Shewanella species. We propose that this assay be used for other bacteria to determine the repertoire of chemotactic molecules, generally not clearly elucidated.
Asunto(s)
Fenómenos Fisiológicos Bacterianos , Factores Quimiotácticos/análisis , Quimiotaxis/fisiología , Shewanella/fisiología , Células Quimiorreceptoras , Factores Quimiotácticos/química , Ensayos Analíticos de Alto RendimientoRESUMEN
In the absence of oxygen, Escherichia coli can use alternative exogenous electron acceptors, including trimethylamine oxide (TMAO), to generate energy. In this study, we showed that in contrast to the other anaerobic respiratory systems, the TMAO reductase (Tor) system was expressed during both aerobiosis and anaerobiosis. By using a torA-lacZ fusion and quantitative reverse transcription polymerase chain reaction, we established that the torCAD operon encoding the Tor system was induced in the presence of TMAO mainly during exponential phase, and that optimal induction required a certain level of DNA supercoiling. We also showed that the presence of oxygen prevented neither the biogenesis of the Tor system nor the reduction of TMAO. The physiological role of TMAO reduction during aerobiosis has not been yet established, but our experiments suggest that alkaline TMA production could enhance the growth conditions by increasing the pH of the culture.
Asunto(s)
Escherichia coli/fisiología , Metilaminas/metabolismo , Consumo de Oxígeno/fisiología , Aerobiosis , Anaerobiosis , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Operón , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
In anaerobiosis, Escherichia coli can use trimethylamine N-oxide (TMAO) as a terminal electron acceptor. Reduction of TMAO in trimethylamine (TMA) is mainly performed by the respiratory TMAO reductase. This system is encoded by the torCAD operon, which is induced in the presence of TMAO. This regulation involves a two-component system comprising TorS, an unorthodox histidine kinase, and TorR, a response regulator. A third protein, TorT, sharing homologies with periplasmic binding proteins, plays a key role in this regulation because disruption of the torT gene abolishes tor expression. In this study we showed that TMAO protects TorT against degradation by the GluC endoproteinase and modifies its temperature-induced CD spectrum. We also isolated a TorT negative mutant that is no longer protected by TMAO from degradation by GluC. Isothermal titration calorimetry confirmed that TorT binds TMAO with a binding constant of 150 mum. Therefore, we conclude that TorT binds TMAO and that this binding promotes a conformational change of TorT. We also showed that TorT interacts with the periplasmic domain of TorS in both the presence and absence of TMAO but the TorT-TMAO complex induces a higher GluC protection of TorS than TorT alone. These results support the idea that TMAO binding to TorT induces a cascade of conformational changes from TorT to TorS, leading to TorS activation. We identified several homologues of the TorT protein that define a new family of periplasmic binding proteins. We thus propose that the members of this family bind TMAO or related compounds and that they are involved in signal transduction or even substrate transport.